Quiz (Mole, Avogadro's Number and Molar Mass)

- 1. A gas jar contains 0.5 mole of oxygen molecules.
 - (a) Calculate the number of oxygen molecules in the gas jar.
 - (b) Hence, calculate the number of oxygen atoms in the gas jar.
- 2. Given that a beaker contains 1.204×10^{24} sodium atoms. How many moles of sodium atoms are there in the beaker?
- 3. What is the molar mass of each of the following substances?
 - (a) Silver

- (b) Fluorine
- (d) Ethanol (C_2H_5OH)

(e) Iron(III) sulphate

(c) Ammonia

(Relative atomic masses: H = 1.0, C = 12.0, N = 14.0, O = 16.0, F = 19.0, S = 32.1, Fe = 55.8, Ag = 107.9)

- 4. What is the mass of each of the following substances?
 - (a) 1 mole of sodium sulphate

(b) 0.5 mole of tetrachloromethane (CCl₄)

(Relative atomic masses: C = 12.0, O = 16.0, Na = 23.0, S = 32.1, Cl = 35.5)

- 5. A gas jar contains 1.85 moles of methane (CH₄).
 - (a) Calculate the mass of methane in the gas jar.
 - (b) Hence, calculate the number of methane molecules in the gas jar.
 - (Relative atomic masses: H = 1.0, C = 12.0)
- 6. A beaker contains 10.21 g of magnesium hydroxide.
 - (a) Calculate the number of moles of magnesium hydroxide in the beaker.
 - (b) Hence, calculate the number of hydroxide ions in the beaker.
 - (Relative atomic masses: H = 1.0, O = 16.0, Mg = 24.3)
- 7. Calculate the mass of
 - (a) 1 Na atom
 (b) 1 H₂O molecule
 (c) 1 formula unit of NaCl

(Relative atomic masses: H = 1.0, O = 16.0, Na = 23.0, Cl = 35.5)

- 8. Calculate the mass of
 (a) 1 Mg atom
 (b) 1 l₂ molecule
 (c) 1 formula unit of calcium carbonate
 (Relative atomic masses: C = 12.0, O = 16.0, Mg = 24.3, Ca = 40.1, I = 126.9)
- 9. Calculate the mass of
 - (a) 0.200 mole of chlorine atoms.
 - (b) 0.200 mole of chlorine molecules.
 - (c) chlorine which contains the same number of molecules as there are in 1.20 mole of water.

(Relative atomic masses: H = 1.0, O = 16.0, Cl = 35.5)

10. Complete the following table.

	Substance	Molar mass (g mol ⁻¹)	Mass (g)	No. of moles (mol)	No. of molecules / formula units
(a)	Sodium hydroxide			0.250	
(b)	Helium		0.20		
(c)	Sulphur dioxide				3.01 × 10 ²⁴
(d)	Compound X		23.0		3.01 × 10 ²³

(Relative atomic masses: H = 1.0, He = 4.0, O = 16.0, Na = 23.0, S = 32.1)

Suggested Answer

- 1. (a) Number of oxygen molecules = $0.5 \times 6.02 \times 10^{23}$ = 3.01×10^{23}
 - (b) As there are two oxygen atoms in each oxygen molecule, number of oxygen atoms
 = 3.01 × 10²³ × 2
 = 6.02 × 10²³
- 2. Number of moles of sodium atoms = $1.204 \times 10^{24} / 6.02 \times 10^{23}$ = 2 mol
- 3. (a) Molar mass of Ag = 107.9 g mol⁻¹
 - (b) Molar mass of F₂ = 19.0 × 2 g mol⁻¹ = 38.0 g mol⁻¹
 - (c) Molar mass of NH_3 = (14.0 + 1.0 × 3) g mol⁻¹ = 17.0 g mol⁻¹
 - (d) Molar mass of C₂H₅OH = (12.0 × 2 + 1.0 × 6 + 16.0) g mol⁻¹ = 46.0 g mol⁻¹
 - (e) Molar mass of $Fe_2(SO_4)_3$ = 55.8 × 2 + 3 × (32.1 + 16.0 × 4) g mol⁻¹ = 399.9 g mol⁻¹
- 4. (a) Mass of 1 mole of Na₂SO₄ = (23.0 × 2 + 32.1 + 16.0 × 4) g = 142.1 g
 - (b) Mass of 0.5 mol of CCl₄ = 0.5 × (12.0 + 35.5 × 4) g = 77.0 g
- 5. (a) Molar mass of methane = (12.0 + 1.0 × 4) g mol⁻¹ = 16.0 g mol⁻¹

Mass of methane = 1.85 mol × 16.0 g mol⁻¹ = 29.6 g

- (b) Number of methane molecules = $1.85 \text{ mol} \times 6.02 \times 10^{23} \text{ mol}^{-1}$ = 1.11×10^{24}
- 6. (a) Molar mass of magnesium hydroxide (Mg(OH)₂)
 = (24.3 + 16.0 × 2 + 1.0 × 2) g mol⁻¹
 = 58.3 g mol⁻¹

Number of moles of Mg(OH)₂ = 10.21 g / 58.3 g mol⁻¹ = 0.175 mol

(b) Since 1 formula unit of $Mg(OH)_2$ contains 2OH- ions, number of moles of OH- ions = 0.175 × 2 mol = 0.350 mol

Number of OH- ions = $0.350 \text{ mol} \times 6.02 \times 10^{23} \text{ mol}^{-1}$ = 2.11×10^{23}

- 7. One mole of a substance corresponds to its molar mass and contains the Avogadro constant of formula units.
 - :. mass of 1 formula unit = molar mass / Avogadro constant
 - (a) Mass of 1 Na atom = 23.0 g mol⁻¹ / 6.02 × 10²³ mol⁻¹ = 3.82 × 10⁻²³ g
 - (b) Mass of 1 H₂O molecule = $(1.0 \times 2 + 16.0)$ g mol⁻¹ / 6.02×10^{23} mol⁻¹ = 2.99×10^{-23} g
 - (c) Mass of 1 formula unit of NaCl = (23.0 + 35.5) g mol⁻¹ / 6.02×10^{23} mol⁻¹ = 9.72×10^{-23} g
- 8. (a) Mass of 1 Mg atom = 24.3 g mol⁻¹ / 6.02×10^{23} mol⁻¹ = 4.04 × 10⁻²³ g
 - (b) Mass of 1 l_2 molecule = 126.9 × 2 g mol⁻¹ / 6.02 × 10²³ mol⁻¹ = 4.22 × 10⁻²² g
 - (c) Mass of 1 formula unit of CaCO₃ = $(40.1 + 12.0 + 16.0 \times 3)$ g mol⁻¹ / 6.02×10^{23} mol⁻¹ = 1.66×10^{-22} g

- 9. (a) Mass of 0.200 mole of Cl atoms = 0.200 × 35.5 g = 7.1 g
 - (b) Mass of 0.200 mole of Cl₂ molecules = 0.200 × (35.5 × 2) g = 14.2 g
 - (c) Mass of Cl₂ = 1.20 × (35.5 × 2) g = 85.2 g

1	0	
	-	ľ

).						
		Substance	Molar mass (g mol ⁻¹)	Mass (g)	No. of moles (mol)	No. of molecules / formula units
	(a)	Sodium hydroxide	40.0	10	0.250	1.51 × 10 ²³
	(b)	Helium	4.0	0.20	0.05	3.01 × 10 ²²
	(c)	Sulphur dioxide	64.1	320.5	5	3.01 × 10 ²⁴
	(d)	Compound X	46.0	23.0	0.5	3.01 × 10 ²³