Quiz (Mole, Avogadro's Number and Molar Mass)

1. A gas jar contains 0.5 mole of oxygen molecules.
(a) Calculate the number of oxygen molecules in the gas jar.
(b) Hence, calculate the number of oxygen atoms in the gas jar.
2. Given that a beaker contains 1.204×10^{24} sodium atoms. How many moles of sodium atoms are there in the beaker?
3. What is the molar mass of each of the following substances?
(a) Silver
(b) Fluorine
(c) Ammonia
(d) Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
(e) Iron(III) sulphate
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0, \mathrm{~F}=19.0, \mathrm{~S}=32.1$, $\mathrm{Fe}=55.8, \mathrm{Ag}=107.9$)
4. What is the mass of each of the following substances?
(a) 1 mole of sodium sulphate
(b) 0.5 mole of tetrachloromethane $\left(\mathrm{CCl}_{4}\right)$
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0, \mathrm{~S}=32.1, \mathrm{Cl}=35.5$)
5. A gas jar contains 1.85 moles of methane $\left(\mathrm{CH}_{4}\right)$.
(a) Calculate the mass of methane in the gas jar.
(b) Hence, calculate the number of methane molecules in the gas jar.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0$)
6. A beaker contains 10.21 g of magnesium hydroxide.
(a) Calculate the number of moles of magnesium hydroxide in the beaker.
(b) Hence, calculate the number of hydroxide ions in the beaker.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Mg}=24.3$)
7. Calculate the mass of
(a) 1 Na atom
(b) $1 \mathrm{H}_{2} \mathrm{O}$ molecule
(c) 1 formula unit of NaCl
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Na}=23.0, \mathrm{Cl}=35.5$)
8. Calculate the mass of
(a) 1 Mg atom
(b) $1 \mathrm{I}_{2}$ molecule
(c) 1 formula unit of calcium carbonate
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Mg}=24.3, \mathrm{Ca}=40.1, \mathrm{I}=126.9$)
9. Calculate the mass of
(a) 0.200 mole of chlorine atoms.
(b) 0.200 mole of chlorine molecules.
(c) chlorine which contains the same number of molecules as there are in 1.20 mole of water.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Cl}=35.5$)
10. Complete the following table.

	Substance	Molar mass $\left(\mathbf{g ~ m o l}^{-1}\right)$	Mass (g)	No. of moles $(\mathbf{m o l})$	No. of molecules / formula units
(a)	Sodium hydroxide		0.250		
(b)	Helium		0.20		
(c)	Sulphur dioxide		23.0		3.01×10^{24}
(d)	Compound X		3.01×10^{23}		

(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{He}=4.0, \mathrm{O}=16.0, \mathrm{Na}=23.0, \mathrm{~S}=32.1$)

Suggested Answer

1. (a) Number of oxygen molecules

$$
\begin{aligned}
& =0.5 \times 6.02 \times 10^{23} \\
& =3.01 \times 10^{23}
\end{aligned}
$$

(b) As there are two oxygen atoms in each oxygen molecule, number of oxygen atoms
$=3.01 \times 10^{23} \times 2$
$=6.02 \times 10^{23}$
2. Number of moles of sodium atoms
$=1.204 \times 10^{24} / 6.02 \times 10^{23}$
$=2 \mathrm{~mol}$
3. (a) Molar mass of Ag
$=107.9 \mathrm{~g} \mathrm{~mol}^{-1}$
(b) Molar mass of F_{2}
$=19.0 \times 2 \mathrm{~g} \mathrm{~mol}^{-1}$
$=38.0 \mathrm{~g} \mathrm{~mol}^{-1}$
(c) Molar mass of NH_{3}
$=(14.0+1.0 \times 3) \mathrm{g} \mathrm{mol}^{-1}$
$=17.0 \mathrm{~g} \mathrm{~mol}^{-1}$
(d) Molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$=(12.0 \times 2+1.0 \times 6+16.0) \mathrm{g} \mathrm{mol}^{-1}$
$=46.0 \mathrm{~g} \mathrm{~mol}^{-1}$
(e) Molar mass of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$=55.8 \times 2+3 \times(32.1+16.0 \times 4) \mathrm{g} \mathrm{mol}^{-1}$
$=399.9 \mathrm{~g} \mathrm{~mol}^{-1}$
4. (a) Mass of 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$=(23.0 \times 2+32.1+16.0 \times 4) \mathrm{g}$
$=142.1 \mathrm{~g}$
(b) Mass of 0.5 mol of CCl_{4}
$=0.5 \times(12.0+35.5 \times 4) \mathrm{g}$
$=77.0 \mathrm{~g}$
5. (a) Molar mass of methane
$=(12.0+1.0 \times 4) \mathrm{g} \mathrm{mol}^{-1}$
$=16.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of methane
$=1.85 \mathrm{~mol}^{2} 16.0 \mathrm{~g} \mathrm{~mol}^{-1}$
$=29.6 \mathrm{~g}$
(b) Number of methane molecules
$=1.85 \mathrm{~mol} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=1.11 \times 10^{24}$
6. (a) Molar mass of magnesium hydroxide $\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)$
$=(24.3+16.0 \times 2+1.0 \times 2) \mathrm{g} \mathrm{mol}^{-1}$
$=58.3 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $\mathrm{Mg}(\mathrm{OH})_{2}$
$=10.21 \mathrm{~g} / 58.3 \mathrm{~g} \mathrm{~mol}^{-1}$
$=0.175 \mathrm{~mol}$
(b) Since 1 formula unit of $\mathrm{Mg}(\mathrm{OH})_{2}$ contains $2 \mathrm{OH}^{-}$ions,
number of moles of OH^{-}ions $=0.175 \times 2 \mathrm{~mol}=0.350 \mathrm{~mol}$
Number of OH^{-}ions
$=0.350 \mathrm{~mol} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=2.11 \times 10^{23}$
7. One mole of a substance corresponds to its molar mass and contains the Avogadro constant of formula units.
\therefore mass of 1 formula unit = molar mass / Avogadro constant
(a) Mass of 1 Na atom
$=23.0 \mathrm{~g} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=3.82 \times 10^{-23} \mathrm{~g}$
(b) Mass of $1 \mathrm{H}_{2} \mathrm{O}$ molecule
$=(1.0 \times 2+16.0) \mathrm{g} \mathrm{mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=2.99 \times 10^{-23} \mathrm{~g}$
(c) Mass of 1 formula unit of NaCl
$=(23.0+35.5) \mathrm{g} \mathrm{mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=9.72 \times 10^{-23} \mathrm{~g}$
8. (a) Mass of 1 Mg atom
$=24.3 \mathrm{~g} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=4.04 \times 10^{-23} \mathrm{~g}$
(b) Mass of $1 \mathrm{I}_{2}$ molecule
$=126.9 \times 2 \mathrm{~g} \mathrm{~mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=4.22 \times 10^{-22} \mathrm{~g}$
(c) Mass of 1 formula unit of CaCO_{3}
$=(40.1+12.0+16.0 \times 3) \mathrm{g} \mathrm{mol}^{-1} / 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$=1.66 \times 10^{-22} \mathrm{~g}$
9. (a) Mass of 0.200 mole of Cl atoms

$$
\begin{aligned}
& =0.200 \times 35.5 \mathrm{~g} \\
& =7.1 \mathrm{~g}
\end{aligned}
$$

(b) Mass of 0.200 mole of Cl_{2} molecules

$$
\begin{aligned}
& =0.200 \times(35.5 \times 2) \mathrm{g} \\
& =14.2 \mathrm{~g}
\end{aligned}
$$

(c) Mass of Cl_{2}

$$
\begin{aligned}
& =1.20 \times(35.5 \times 2) \mathrm{g} \\
& =85.2 \mathrm{~g}
\end{aligned}
$$

10.

	Substance	Molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	Mass (g)	No. of moles (mol)	No. of molecules $/$ formula units
(a)	Sodium hydroxide	40.0	10	0.250	1.51×10^{23}
(b)	Helium	4.0	0.20	0.05	3.01×10^{22}
(c)	Sulphur dioxide	64.1	320.5	5	3.01×10^{24}
(d)	Compound X	46.0	23.0	0.5	3.01×10^{23}

