Quiz (Molar Volume)

1. Calculate the number of moles of the following gases at room temperature and pressure:
(a) $7.6 \mathrm{dm}^{3}$ of CH_{4}
(b) $360 \mathrm{~cm}^{3}$ of NO_{2}
(Molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$)
2. Calculate the number of moles of the following gases at room temperature and pressure:
(a) $2.8 \mathrm{dm}^{3}$ of CO_{2}
(b) $480 \mathrm{~cm}^{3}$ of Cl_{2}
(Molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$)
3. Calculate the volume of the following gases at room temperature and pressure:
(a) 1.5 mol of SO_{2}
(b) 0.03 mol of NH_{3}
(c) 1.3 mol of H_{2}
(d) 0.25 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$
(Molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$)
4. Calculate the volume of each of the following gases at room temperature and pressure:
(a) 0.55 mol of N_{2}
(b) 1.65 mol of Cl_{2}
(Molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$)
5. Calculate the number of molecules in $180 \mathrm{~cm}^{3}$ of $\mathrm{HCl}(\mathrm{g})$ at room temperature and pressure.
(Molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$; Avogadro constant $=6.02 \times 10^{23} \mathrm{~mol}^{-1}$)
6. Calculate the volumes (in dm^{3}) of the following quantities of gases at room temperature and pressure.
(a) 0.25 mol of Ar
(b) $2.41 \times 10^{21} \mathrm{CH}_{4}$ molecules
(Molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$; Avogadro constant $=6.02 \times 10^{23} \mathrm{~mol}^{-1}$)

Suggested Answer

1. (a) Number of moles of CH_{4}
= volume of $\mathrm{CH}_{4} /$ molar volume of CH_{4}
$=7.6 \mathrm{dm}^{3} / 24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=0.317 \mathrm{~mol}$
(b) Number of moles of NO_{2}
$=$ volume of $\mathrm{NO}_{2} /$ molar volume of NO_{2}
$=360 \mathrm{~cm}^{3} / 24000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
$=0.015 \mathrm{~mol}$
2. (a) Number of moles of CO_{2}
$=2.8 / 24.0$
$=0.12 \mathrm{~mol}$
(b) Number of moles of Cl_{2}
= $480 / 24000$
$=0.02 \mathrm{~mol}$
3. At room temperature and pressure,
volume of a gas $\left(\mathrm{dm}^{3}\right)=$ no. of moles $(\mathrm{mol}) \times 24.0\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)$
(a) Volume of SO_{2}
$=1.5 \mathrm{~mol}^{3} 24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=36.0 \mathrm{dm}^{3}$
(b) Volume of NH_{3}
$=0.03 \mathrm{~mol}^{3} 24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=0.72 \mathrm{dm}^{3}$ (or $720 \mathrm{~cm}^{3}$)
(c) Volume of H_{2}
$=1.3 \mathrm{~mol}^{3} 24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=31.2 \mathrm{dm}^{3}$
(d) Volume of $\mathrm{N}_{2} \mathrm{O}_{4}$
$=0.25 \mathrm{~mol}^{3} 24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=6.0 \mathrm{dm}^{3}$
4. (a) Volume of N_{2}
$=0.55 \mathrm{~mol}^{3} 24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=13.2 \mathrm{dm}^{3}$
(b) Volume of Cl_{2}
$=1.65 \mathrm{~mol}^{2} 24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$=39.6 \mathrm{dm}^{3}$
5. Number of moles of HCl molecules
$=180 / 24000$
$=7.5 \times 10^{-3} \mathrm{~mol}$
Number of HCl molecules
$=7.5 \times 10^{-3} \times 6.02 \times 10^{23}$
$=4.515 \times 10^{21}$
6. (a) Volume of Ar
$=0.25 \times 24.0$
$=6 \mathrm{dm}^{3}$
(b) Volume of CH_{4}
$=\left(2.41 \times 10^{21} / 6.02 \times 10^{23}\right) \times 24.0$
$=0.096 \mathrm{dm}^{3}$
