Quiz (Molar Volume)

- 1. Calculate the number of moles of the following gases at room temperature and pressure:
 - (a) $7.6 \text{ dm}^3 \text{ of CH}_4$
 - (b) $360 \text{ cm}^3 \text{ of NO}_2$

(Molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)

- 2. Calculate the number of moles of the following gases at room temperature and pressure:
 - (a) $2.8 \text{ dm}^3 \text{ of } CO_2$
 - (b) 480 cm³ of Cl₂

(Molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)

- 3. Calculate the volume of the following gases at room temperature and pressure:
 - (a) $1.5 \text{ mol of } SO_2$
 - (b) 0.03 mol of NH₃
 - (c) 1.3 mol of H₂
 - (d) $0.25 \text{ mol of } N_2O_4$

(Molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)

- 4. Calculate the volume of each of the following gases at room temperature and pressure:
 - (a) $0.55 \text{ mol of } N_2$
 - (b) 1.65 mol of Cl₂

(Molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)

5. Calculate the number of molecules in 180 cm³ of HCl(g) at room temperature and pressure.

(Molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$; Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$)

- 6. Calculate the volumes (in dm³) of the following quantities of gases at room temperature and pressure.
 - (a) 0.25 mol of Ar
 - (b) 2.41×10^{21} CH₄ molecules

(Molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$; Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$)

Suggested Answer

- 1. (a) Number of moles of CH₄
 - = volume of CH₄ / molar volume of CH₄
 - $= 7.6 \text{ dm}^3 / 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - $= 0.317 \, \text{mol}$
 - (b) Number of moles of NO₂
 - = volume of NO₂ / molar volume of NO₂
 - $= 360 \text{ cm}^3 / 24000 \text{ cm}^3 \text{ mol}^{-1}$
 - $= 0.015 \, \text{mol}$
- 2. (a) Number of moles of CO₂
 - = 2.8 / 24.0
 - $= 0.12 \, \text{mol}$
 - (b) Number of moles of Cl₂
 - = 480 / 24000
 - $= 0.02 \, \text{mol}$
- 3. At room temperature and pressure, volume of a gas (dm^3) = no. of moles $(mol) \times 24.0 (dm^3 mol^{-1})$
 - (a) Volume of SO₂
 - $= 1.5 \text{ mol} \times 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - $= 36.0 \text{ dm}^3$
 - (b) Volume of NH₃
 - $= 0.03 \text{ mol} \times 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - $= 0.72 \text{ dm}^3 \text{ (or } 720 \text{ cm}^3\text{)}$
 - (c) Volume of H₂
 - $= 1.3 \text{ mol} \times 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - $= 31.2 \, dm^3$
 - (d) Volume of N₂O₄
 - $= 0.25 \text{ mol} \times 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - $= 6.0 \text{ dm}^3$
- 4. (a) Volume of N_2
 - $= 0.55 \text{ mol} \times 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - $= 13.2 \, dm^3$
 - (b) Volume of Cl₂
 - $= 1.65 \text{ mol} \times 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - $= 39.6 \, dm^3$

- 5. Number of moles of HCl molecules
 - = 180 / 24000
 - $= 7.5 \times 10^{-3} \text{ mol}$

Number of HCI molecules

- $= 7.5 \times 10^{-3} \times 6.02 \times 10^{23}$
- $= 4.515 \times 10^{21}$
- 6. (a) Volume of Ar
 - $= 0.25 \times 24.0$
 - $= 6 dm^{3}$
 - (b) Volume of CH₄
 - = $(2.41 \times 10^{21} / 6.02 \times 10^{23}) \times 24.0$
 - $= 0.096 \text{ dm}^3$