Quiz (Percentage by Mass of an Element in a Compound)

1. Bauxite is the main ore of aluminium. It contains mainly aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. Calculate the percentage by mass of aluminium in aluminium oxide. (Relative atomic masses: $\mathrm{O}=16.0, \mathrm{Al}=27.0$)
2. Sodium hydroxide is the main ingredient of drain cleaner. Calculate the percentage by mass of sodium in sodium hydroxide.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
3. Calculate the mass of copper in 15.0 g of copper(II) sulphate-5-water $\left(\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}\right)$.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~S}=32.1, \mathrm{Cu}=63.5$)
4. Calculate the mass of potassium in 7.91 g of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$. (Relative atomic masses: $\mathrm{O}=16.0, \mathrm{~K}=39.1, \mathrm{Cr}=52.0$)
5. The chloride of a metal M has the formula of MCl_{3} and contains 34.4% by mass of M. Calculate the relative atomic mass of M.
(Relative atomic mass: $\mathrm{Cl}=35.5$)
6. The bromide of a metal X has the formula of $X B r 2$ and contains 25.6% by mass of X. Calculate the relative atomic mass of X.
(Relative atomic mass: $\mathrm{Br}=79.9$)
7. A metal oxide $M O$ contains 79.87% by mass of the metal M. Find the relative atomic mass of M.
(Relative atomic mass: $O=16.0$)
8. 26.88 g of a metal chloride MCl contains 5.68 g of chlorine. Find the relative atomic mass of the metal M.
(Relative atomic mass: $\mathrm{Cl}=35.5$)
9. What is the mass of nitrogen present in the sample of sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$ which contains 100 g of sodium?
(Relative atomic masses: $\mathrm{N}=14.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
10. What is the mass of water of crystallization present in the sample of sodium carbonate-10-water $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}\right)$ which contains 4.6 g of sodium?
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)

Suggested Answer

1. Formula mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$
$=27.0 \times 2+16.0 \times 3$
$=102.0$
Percentage by mass of Al in $\mathrm{Al}_{2} \mathrm{O}_{3}$
$=\left(\right.$ R.A.M. of $\mathrm{Al} \times$ No. of atoms of $\mathrm{Al} /$ formula mass of $\left.\mathrm{Al}_{2} \mathrm{O}_{3}\right) \times 100 \%$
$=(27.0 \times 2 / 102.0) \times 100 \%$
= 52.9%
2. Formula mass of $\mathrm{NaOH}=(23.0+16.0+1.0) \mathrm{g} \mathrm{mol}^{-1}=40.0 \mathrm{~g} \mathrm{~mol}^{-1}$

Percentage by mass of Na in NaOH
$=(23.0 / 40.0) \times 100 \%$
= 57.5%
3. Formula mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$=63.5+32.1+16.0 \times 4+5 \times(1.0 \times 2+16.0)$
$=249.6$

Percentage by mass of Cu in $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$
$=\left(\right.$ R.A.M of $\mathrm{Cu} \times \mathrm{No}$. of atoms of $\mathrm{Cu} /$ formula mass of $\left.\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}\right) \times 100 \%$
$=(63.5 / 249.6) \times 100 \%$
$=25.4 \%$
That means for every gram of $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$, there is 25.4% (or 0.254 g) of Cu in it.
$\therefore \quad$ mass of Cu in 15.0 g of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$=15.0 \mathrm{~g} \times 25.4 \%$
$=3.81 \mathrm{~g}$
4. Formula mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$=(39.1 \times 2+52.0 \times 2+16.0 \times 7) \mathrm{g} \mathrm{mol}^{-1}$
$=294.2 \mathrm{~g} \mathrm{~mol}^{-1}$
Percentage by mass of K in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$=(39.1 \times 2 / 294.2) \times 100 \%$
$=26.6 \%$
Mass of K in 7.91 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$=7.91 \mathrm{~g} \times 26.6 \%$
$=2.10 \mathrm{~g}$
5. Let the relative atomic mass of M be a.

Percentage by mass of M in MCl_{3}
$=\left(\right.$ R.A.M. of $M \times$ No. of atoms of $M /$ formula mass of $\left.M C l_{3}\right) \times 100 \%$
$34.4 \%=(a / a+35.5 \times 3) \times 100 \%$
$\Rightarrow \quad a=55.8$
$\therefore \quad$ the relative atomic mass of M is 55.8.
6. Let the relative atomic mass of X be a

Percentage by mass of X in $X \mathrm{Br}_{2}$
$=\left(\right.$ R.A.M. of $X \times$ No. of atoms of $X /$ formula mass of $\left.X \mathrm{Br}_{2}\right) \times 100 \%$
$25.6 \%=(a / a+79.9 \times 2) \times 100 \%$
$\Rightarrow \quad a=55.0$
7. Let the relative atomic mass of M be a.

Percentage by mass of M in $M O$
$=($ R.A.M. of $M \times$ No. of atoms of $M /$ formula mass of $M O) \times 100 \%$
$79.87 \%=(a / a+16.0) \times 100 \%$
$\Rightarrow \quad a=63.5$
$\therefore \quad$ the relative atomic mass of M is 63.5.
8. Let the relative atomic mass of M be a.
$5.68 / 26.88=35.5 / a+35.5$
$\Rightarrow \quad a=132.5$
$\therefore \quad$ the relative atomic mass of M is 132.5 .
9. Number of moles of $\mathrm{Na}=100 / 23.0 \mathrm{~mol}=4.35 \mathrm{~mol}$

Since 1 formula unit of NaNO_{3} contains 1 Na ,
number of moles of $\mathrm{NaNO}_{3}=4.35 \mathrm{~mol}$
Mass of NaNO_{3}
$=4.35 \times(23.0+14.0+16.0 \times 3) \mathrm{g}$
$=369.75 \mathrm{~g}$
Percentage by mass of N in NaNO_{3}
$=(14.0 / 23.0+14.0+16.0 \times 3) \times 100 \%=16.5 \%$
Mass of N in the NaNO_{3} sample
$=369.75 \mathrm{~g} \times 16.5 \%$
$=61.0 \mathrm{~g}$
10. Number of moles of $\mathrm{Na}=4.6 / 23.0 \mathrm{~mol}=0.2 \mathrm{~mol}$

Since 1 formula unit of $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ contains 2 Na ,
number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}=0.2 / 2 \mathrm{~mol}=0.1 \mathrm{~mol}$
Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$
$=0.1 \times[(23.0 \times 2+12.0+16.0 \times 3)+10 \times(1.0 \times 2+16.0)] \mathrm{g}$
$=28.6 \mathrm{~g}$
Percentage by mass of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$
$=\{10 \times(1.0 \times 2+16.0) /[23.0 \times 2+12.0+16.0 \times 3+10 \times(1.0 \times 2+16.0)]\} \times 100 \%$
$=62.9 \%$
Mass of $\mathrm{H}_{2} \mathrm{O}$ in the $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ sample
$=28.6 \mathrm{~g} \times 62.9 \%$
$=18.0 \mathrm{~g}$

