Quiz (Empirical Formula, Molecular Formula and Structural Formula)

1. Compound Y was found to contain iron and oxygen only. Experiments showed that it contains 70% iron and 30% oxygen by mass. Calculate the empirical formula of Y.

(Relative atomic masses: O = 16.0, Fe = 55.8)

2. An experiment was performed to determine the empirical formula of an oxide of magnesium. The experimental results are tabulated below.

Item	Mass (g)
Crucible + lid	28.092
Crucible + lid + magnesium	28.698
Crucible + lid + oxide of magnesium	29.103

Determine the empirical formula of the oxide of magnesium using the above data.

(Relative atomic masses: O = 16.0, Mg = 24.3)

- 1.200 g of a compound containing only carbon, hydrogen and oxygen gave
 1.173 g of carbon dioxide and 0.240 g of water on complete combustion. Find the empirical formula of the compound. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)
- 4. A compound has the empirical formula C_xH_y . On analysis, 1.000 g of the compound was found to contain 0.857 g of carbon. Find the values of x and y. (Relative atomic masses: H = 1.0, C = 12.0)
- Compound X contains 26.95% sulphur, 13.44% oxygen and 59.61% chlorine by mass. Find the empirical formula of X. (Relative atomic masses: O = 16.0, S = 32.1, Cl = 35.5)
- A compound has an empirical formula CH₂ and a relative molecular mass of 42.0. Determine its molecular formula. (Relative atomic masses: H = 1.0, C = 12.0)
- 7. Compound X was found to contain carbon and hydrogen only. Experiments showed that it contained 80% carbon and 20% hydrogen by mass. If its relative molecular mass is 30.0, calculate the empirical formula and molecular formula of X.

(Relative atomic masses: H = 1.0, C = 12.0)

8. Compound Z containing only carbon, hydrogen and oxygen burnt completely in air to form carbon dioxide and water as the only products. 2.43 g of Z gave 3.96 g of carbon dioxide and 1.35 g of water. Determine the empirical formula of Z. If its relative molecular mass is 162.0, determine the molecular formula of Z. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)

- 5.60 g of hydrated copper(II) sulphate CuSO₄•nH₂O was heated in a crucible to drive off the water of crystallization. The white residue was anhydrous copper(II) sulphate, which was found to have a mass of 3.59 g.
 - (a) Deduce a reasonable value for n.
 - (b) Explain why the answer you gave in (a) differs a bit from the value actually calculated.

(Relative atomic masses: H = 1.0, O = 16.0, S = 32.1, Cu = 63.5)

- 10. A compound containing only carbon, hydrogen and oxygen. 0.81 g of the compound gave 1.32 g of carbon dioxide and 0.45 g of water on complete combustion. Find the empirical formula of the compound. If the relative molecular mass of the compound is 320.0, find its molecular formula. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)
- A compound was found to contain 40.00% by mass of carbon, 6.67% by mass of hydrogen and 53.33% by mass of oxygen. It has a relative molecular mass of 60.0. Calculate its molecular formula. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)
- 12. Epsom salts are used as bath salts to relieve aches and pains. They are hydrated salts of magnesium sulphate with formula $MgSO_4 \bullet nH_2O$. Experiments were carried out to find the formula of the salt. It was found that it contained 51.22% by mass of water of crystallization. Find the value of n. (Relative atomic masses: H = 1.0, O = 16.0, Mg = 24.3, S = 32.1)

Suggested Answer

1. Assume that there are 100 g of Y. Then there are 70 g of iron and 30 g of oxygen.

	Fe	0
Mass (g)	70	30
Number of moles of atoms (mol)	70 / 55.8 = 1.25	30 / 16.0 = 1.88
Simplest whole number mole ratio of		
atoms (divided by the smallest	1.25 / 1.25 = 1	1.88 / 1.25 = 1.5
number of moles)		
multiplied by the smallest possible		
whole number (2 here) to turn all the	$1 \times 2 = 2$	1.5 × 2 = 3
values into whole numbers		

 \therefore the empirical formula of Y is Fe₂O₃.

2.

	Mg	0
Mass (g)	28.698 - 28.092	29.103 – 28.698
	= 0.606	= 0.405
Relative atomic mass	24.3	16.0
Number of moles of atoms (mol)	0.606 / 24.3	0.405 / 16.0
	= 0.0249	= 0.0253
Simplest whole number mole ratio	0.0249 / 0.0249	0.0253 / 0.0249
of atoms	=]	= 1.02 ≈ 1

- :. the empirical formula of the oxide of magnesium is MgO.
- 3. Mass of C in the compound = $1.173 \times (12.0 / 12.0 + 16.0 \times 2)$ g = 0.320 g Mass of H in the compound = $0.240 \times (1.0 \times 2 / 1.0 \times 2 + 16.0)$ g = 0.0267 g Mass of O in the compound = (1.200 - 0.320 - 0.0267) g = 0.853 g

	С	Н	0
Mass (g)	0.320	0.0267	0.853
Relative atomic mass	12.0	1.0	16.0
Number of moles of	0.320 / 12.0	0.0267 / 1.0	0.853 / 16.0
atoms (mol)	= 0.0267	= 0.0267	= 0.0533
Simplest whole number	0.0267 / 0.0267	0.0267 / 0.0267	0.0533 / 0.0267
mole ratio of atoms	= 1	= 1	= 2

 \therefore the empirical formula of the compound is CHO₂.

	С	Н
Mass (g)	0.857	1.000 - 0.857 = 0.143
Relative atomic mass	12.0	1.0
Number of moles of atoms (mol)	0.857 / 12.0	0.143 / 1.0
	= 0.0714	= 0.143
Simplest whole number mole ratio	0.0714 / 0.0714	0.143 / 0.0714
of atoms	=]	= 2

- \therefore the empirical formula of the compound is CH₂.
- 5. Assume that there are 100 g of X. Then, there are 26.95 g of sulphur, 13.44 g of oxygen and 59.61 g of chlorine.

	S	0	Cl
Mass (g)	26.95	13.44	59.61
Relative atomic mass	32.1	16.0	35.5
Number of moles of	26.95 / 32.1	13.44 / 16.0	59.61 / 35.5
atoms (mol)	= 0.840	= 0.84	= 1.68
Simplest whole number	0.840 / 0.840	0.84 / 0.84	1.68 / 0.84
mole ratio of atoms	= 1	= 1	= 2

- \therefore the empirical formula of the compound is SOCI₂.
- 6. Let the molecular formula of the compound be $(CH_2)_n$, where n is a whole number.

Relative molecular mass of $(CH_2)_n = 42.0$ n (12.0 + 1.0 × 2) = 42.0 \Rightarrow n = 3

- \Rightarrow n = 3
- \therefore the molecular formula of the compound is (CH₂)₃, i.e. C₃H₆.
- 7. Assume that there are 100 g of X. Then there are 80 g of carbon and 20 g of hydrogen.

	С	Н
Mass (g)	80	20
Relative atomic mass	12.0	1.0
Number of moles of stoms (mol)	80 / 12.0	20 / 1.0
Number of moles of atoms (mol)	= 6.67	= 20
Simplest whole number mole ratio	6.67 / 6.67	20 / 6.67
of atoms	= 1	= 3

 \therefore the empirical formula of X is CH₃.

Let the molecular formula of X be $(CH_3)_n$, where n is the whole number.

Relative molecular mass of (CH₃)_n = 30.0 n (12.0 + 1.0 × 3) = 30.0 15.0 n = 30.0 ⇒ n = 2

 \therefore the molecular formula of X is C₂H₆.

Note: 2.99 can be rounded off to 3, but 2.8 is usually NOT rounded off to 3.

8. Since all the C in CO_2 and H in H_2O came from Z,

mass of C in Z = $3.96 \text{ g} \times (12.0 / 12.0 + 16.0 \times 2) = 1.08 \text{ g};$ mass of H in Z = $1.35 \text{ g} \times (1.0 \times 2 / 1.0 \times 2 + 16.0) = 0.15 \text{ g}$

The rest of mass of Z must come from oxygen.

:. mass of O in Z = (2.43 - 1.08 - 0.15) g = 1.20 g

Now go on to find the empirical formula of Z as follows:

	С	Н	0
Mass (g)	1.08	0.15	1.20
Relative atomic mass	12.0	1.0	16.0
Number of moles of	1.08 / 12.0	0.15 / 1.0	1.20 / 16.0
atoms (mol)	= 0.090	= 0.15	= 0.075
Simplest whole number	0.090 / 0.075	0.15 / 0.075	0.075 / 0.075
mole ratio of atoms	= 1.2	= 2	= 1
multiplied by the smallest			
possible whole number	1.2 × 5	2 × 5	1 × 5
(5 here) to turn all values	= 6	= 10	= 5
into whole numbers			

 \therefore the empirical formula of Z is C₆H₁₀O₅.

Let the molecular formula of Z be $(C_6H_{10}O_5)_n$, where n is the whole number.

Relative molecular mass of (C₆H₁₀O₅)_n = 162.0 n (12.0 × 6 + 1.0 × 10 + 16.0 × 5) = 162.0 162.0 n = 162.0

- \Rightarrow n = 1
- \therefore the molecular formula of Z is C₆H₁₀O₅.

9. (a) Mass of water of crystallization = (5.60 - 3.59) g = 2.01 g

	Cu\$O4	H ₂ O
Mass (g)	3.59	2.01
Formula mass	159.6	18.0
Number of moles of formula units	3.59 / 159.6	2.01 / 18.0
(mol)	= 0.0225	= 0.112
Simplest whole number mole ratio	0.0225 / 0.0225	0.112 / 0.0225
of formula units	=]	= 4.98

Since n should be a whole number, a reasonable value of n would be 5.

- (b) The experimental value of n (4.98) is lower than 5. This might be due to two reasons:
 - (1) Not all water of crystallization has been removed in the heating process.
 - (2) The anhydrous salt has absorbed some moisture from the atmosphere during weighing.

10. Mass of C in the compound = 1.32×12.0

12.0 + 16.0 × 2

g = 0.36 g

Mass of H in the compound = $0.45 \times 1.0 \times 2$

1.0 × 2 + 16.0

g = 0.05 g

Mass of O in the compound = (0.81 - 0.36 - 0.05) g = 0.40 g

the empirical formula of the compound is C6H10O5.

Let the molecular formula of the compound be (C6H10O5)n.

 $320.0 = n \times (12.0 \times 6 + 1.0 \times 10 + 16.0 \times 5)$

the molecular formula of the compound is C12H20O10.

11. Assume that there are 100 g of the compound. Then, there are 40.00 g of carbon, 6.67 g of hydrogen and 53.33 g of oxygen.

the empirical formula of the compound is CH2O.

Let the molecular formula of the compound be (CH2O)n.

 $60.0 = n \times (12.0 + 1.0 \times 2 + 16.0)$

n = 2

the molecular formula of the compound is C2H4O2.

12. Assume that there are 100 g of Epsom salt. Then, there are 51.22 g of water of crystallization and (100 – 51.22) g = 48.78 g of MgSO4. the value of n is 7.
MgSO4 H2O
Mass (g) 48.78 51.22
Formula mass 24.3 + 32.1 + 16.0 × 4 = 120.4 1.0 × 2 + 16.0 = 18.0
Number of moles of formula units (mol)
48.78
120.4

= 0.4051 51.22 18.0 = 2.85 Simplest whole number mole ratio of formula units 0.4051 0.4051 = 1 2.85 0.4051 = 7.04 7 СНО Mass (g) 0.36 0.05 0.40 Relative atomic mass 12.0 1.0 16.0 Number of moles of atoms (mol) 0.36 12.0 = 0.03 0.05 1.0 = 0.05 0.40 16.0 = 0.025 Simplest whole number mole ratio of atoms 0.03 0.025 = 1.2 0.05 0.025 = 2 0.025 0.025 = 1 $1.2 \times 5 = 62 \times 5 = 101 \times 5 = 5$ СНО Mass (g) 40.00 6.67 53.33 **Relative atomic** mass 12.0 1.0 16.0 Number of moles of atoms (mol) 40.00 12.0 = 3.33 6.67 1.0

= 6.67 53.33 16.0 = 3.33 Simplest whole number mole ratio of atoms 3.33 3.33 = 1 6.67 3.33 = 2 3.33 3.33 = 1