Quiz (Empirical Formula, Molecular Formula and Structural Formula)

1. Compound Y was found to contain iron and oxygen only. Experiments showed that it contains 70% iron and 30% oxygen by mass. Calculate the empirical formula of Y.
(Relative atomic masses: $\mathrm{O}=16.0, \mathrm{Fe}=55.8$)
2. An experiment was performed to determine the empirical formula of an oxide of magnesium. The experimental results are tabulated below.

Item	Mass (g)
Crucible + lid	28.092
Crucible + lid + magnesium	28.698
Crucible + lid + oxide of magnesium	29.103

Determine the empirical formula of the oxide of magnesium using the above data.
(Relative atomic masses: $\mathrm{O}=16.0, \mathrm{Mg}=24.3$)
3. $\quad 1.200 \mathrm{~g}$ of a compound containing only carbon, hydrogen and oxygen gave 1.173 g of carbon dioxide and 0.240 g of water on complete combustion. Find the empirical formula of the compound.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
4. A compound has the empirical formula $\mathrm{C}_{x} \mathrm{H}_{y}$. On analysis, 1.000 g of the compound was found to contain 0.857 g of carbon. Find the values of x and y . (Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0$)
5. Compound X contains 26.95% sulphur, 13.44% oxygen and 59.61% chlorine by mass. Find the empirical formula of X.
(Relative atomic masses: $\mathrm{O}=16.0, \mathrm{~S}=32.1, \mathrm{Cl}=35.5$)
6. A compound has an empirical formula CH_{2} and a relative molecular mass of 42.0. Determine its molecular formula.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0$)
7. Compound X was found to contain carbon and hydrogen only. Experiments showed that it contained 80% carbon and 20% hydrogen by mass. If its relative molecular mass is 30.0, calculate the empirical formula and molecular formula of X.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0$)
8. Compound Z containing only carbon, hydrogen and oxygen burnt completely in air to form carbon dioxide and water as the only products. 2.43 g of Z gave 3.96 g of carbon dioxide and 1.35 g of water.

Determine the empirical formula of Z. If its relative molecular mass is 162.0, determine the molecular formula of Z.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
9. 5.60 g of hydrated copper(II) sulphate $\mathrm{CuSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$ was heated in a crucible to drive off the water of crystallization. The white residue was anhydrous copper(II) sulphate, which was found to have a mass of 3.59 g .
(a) Deduce a reasonable value for n.
(b) Explain why the answer you gave in (a) differs a bit from the value actually calculated.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{~S}=32.1, \mathrm{Cu}=63.5$)
10. A compound containing only carbon, hydrogen and oxygen. 0.81 g of the compound gave 1.32 g of carbon dioxide and 0.45 g of water on complete combustion. Find the empirical formula of the compound. If the relative molecular mass of the compound is 320.0, find its molecular formula.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
11. A compound was found to contain 40.00% by mass of carbon, 6.67% by mass of hydrogen and 53.33% by mass of oxygen. It has a relative molecular mass of 60.0. Calculate its molecular formula.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
12. Epsom salts are used as bath salts to relieve aches and pains. They are hydrated salts of magnesium sulphate with formula $\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$.
Experiments were carried out to find the formula of the salt. It was found that it contained 51.22% by mass of water of crystallization. Find the value of n.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Mg}=24.3, \mathrm{~S}=32.1$)

Suggested Answer

1. Assume that there are 100 g of Y. Then there are 70 g of iron and 30 g of oxygen.

	Fe	\mathbf{O}
Mass (g)	70	30
Number of moles of atoms (mol)	$70 / 55.8=1.25$	$30 / 16.0=1.88$
Simplest whole number mole ratio of atoms (divided by the smallest number of moles)	$1.25 / 1.25=1$	$1.88 / 1.25=1.5$
multiplied by the smallest possible whole number (2 here) to turn all the values into whole numbers	$1 \times 2=2$	$1.5 \times 2=3$

$\therefore \quad$ the empirical formula of Y is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
2.

	$\mathbf{M g}$	\mathbf{O}
Mass (g)	$28.698-28.092$ $=0.606$	$29.103-28.698$ $=0.405$
Relative atomic mass	24.3	16.0
Number of moles of atoms (mol)	$0.606 / 24.3$ $=0.0249$	$0.405 / 16.0$ $=0.0253$
Simplest whole number mole ratio of atoms	$0.0249 / 0.0249$ $=1$	$0.0253 / 0.0249$ $=1.02 \approx 1$

$\therefore \quad$ the empirical formula of the oxide of magnesium is MgO .
3. Mass of C in the compound $=1.173 \times(12.0 / 12.0+16.0 \times 2) \mathrm{g}=0.320 \mathrm{~g}$ Mass of H in the compound $=0.240 \times(1.0 \times 2 / 1.0 \times 2+16.0) \mathrm{g}=0.0267 \mathrm{~g}$ Mass of O in the compound $=(1.200-0.320-0.0267) \mathrm{g}=0.853 \mathrm{~g}$

	C	H	O
Mass (g)	0.320	0.0267	0.853
Relative atomic mass	12.0	1.0	16.0
Number of moles of atoms (mol)	$0.320 / 12.0$ $=0.0267$	$0.0267 / 1.0$ $=0.0267$	$0.853 / 16.0$
Simplest whole number mole ratio of atoms	$0.0267 / 0.0267$ $=1$	$0.0267 / 0.0267$ $=1$	$0.0533 / 0.0267$

$\therefore \quad$ the empirical formula of the compound is CHO_{2}.
4.

	C	H
Mass (g)	0.857	$1.000-0.857=0.143$
Relative atomic mass	12.0	1.0
Number of moles of atoms (mol)	$0.857 / 12.0$ $=0.0714$	$0.143 / 1.0$ Simplest whole number mole ratio of atoms
$0.0714 / 0.0714$ $=1$	$0.143 / 0.0714$	$=2$

$\therefore \quad$ the empirical formula of the compound is CH_{2}.
5. Assume that there are 100 g of X. Then, there are 26.95 g of sulphur, 13.44 g of oxygen and 59.61 g of chlorine.

	S	O	Cl
Mass (g)	26.95	13.44	59.61
Relative atomic mass	32.1	16.0	35.5
Number of moles of atoms (mol)	$26.95 / 32.1$ $=0.840$	$13.44 / 16.0$ $=0.84$	$59.61 / 35.5$
Simplest whole number mole ratio of atoms	$0.840 / 0.840$ $=1$	$0.84 / 0.84$ $=1$	$1.68 / 0.84$

$\therefore \quad$ the empirical formula of the compound is SOCl_{2}.
6. Let the molecular formula of the compound be $\left(\mathrm{CH}_{2}\right)_{n}$, where n is a whole number.

Relative molecular mass of $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}=42.0$

$$
\begin{aligned}
& \mathrm{n}(12.0+1.0 \times 2)=42.0 \\
\Rightarrow \quad & \mathrm{n}=3
\end{aligned}
$$

$\therefore \quad$ the molecular formula of the compound is $\left(\mathrm{CH}_{2}\right)_{3}$, i.e. $\mathrm{C}_{3} \mathrm{H}_{6}$.
7. Assume that there are 100 g of X. Then there are 80 g of carbon and 20 g of hydrogen.

	C	H
Mass (g)	80	20
Relative atomic mass	12.0	1.0
Number of moles of atoms (mol)	$80 / 12.0$	$20 / 1.0$
Simplest whole number mole ratio	(m.67 / 6.67 of atoms	$=1$

$\therefore \quad$ the empirical formula of X is CH_{3}.

Let the molecular formula of X be $\left(\mathrm{CH}_{3}\right)_{n}$, where n is the whole number.
Relative molecular mass of $\left(\mathrm{CH}_{3}\right)_{\mathrm{n}}=30.0$

$$
\begin{aligned}
& \mathrm{n}(12.0+1.0 \times 3)=30.0 \\
& 15.0 \mathrm{n}=30.0 \\
\Rightarrow \quad & \mathrm{n}=2
\end{aligned}
$$

$\therefore \quad$ the molecular formula of X is $\mathrm{C}_{2} \mathrm{H}_{6}$.
Note: 2.99 can be rounded off to 3 , but 2.8 is usually NOT rounded off to 3 .
8. Since all the C in CO_{2} and H in $\mathrm{H}_{2} \mathrm{O}$ came from Z,
mass of C in $Z=3.96 \mathrm{~g} \times(12.0 / 12.0+16.0 \times 2)=1.08 \mathrm{~g}$;
mass of H in $\mathrm{Z}=1.35 \mathrm{~g} \times(1.0 \times 2 / 1.0 \times 2+16.0)=0.15 \mathrm{~g}$

The rest of mass of Z must come from oxygen.
$\therefore \quad$ mass of O in $Z=(2.43-1.08-0.15) \mathrm{g}=1.20 \mathrm{~g}$
Now go on to find the empirical formula of Z as follows:

	C	H	O
Mass (g)	1.08	0.15	1.20
Relative atomic mass	12.0	1.0	16.0
Number of moles of atoms (mol)	$1.08 / 12.0$ $=0.090$	$0.15 / 1.0$ $=0.15$	$1.20 / 16.0$ $=0.075$
Simplest whole number mole ratio of atoms	$0.090 / 0.075$ $=1.2$	$0.15 / 0.075$ $=2$	$0.075 / 0.075$ $=1$
multiplied by the smallest possible whole number (5 here) to turn all values into whole numbers	1.2×5 $=6$	2×5 $=10$	1×5 $=5$

$\therefore \quad$ the empirical formula of Z is $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$.
Let the molecular formula of Z be $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}}$, where n is the whole number.
Relative molecular mass of $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}}=162.0$

$$
n(12.0 \times 6+1.0 \times 10+16.0 \times 5)=162.0
$$

$162.0 n=162.0$
$\Rightarrow \mathrm{n}=1$
$\therefore \quad$ the molecular formula of Z is $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$.
9. (a) Mass of water of crystallization $=(5.60-3.59) \mathrm{g}=2.01 \mathrm{~g}$

	CuSO_{4}	$\mathrm{H}_{2} \mathrm{O}$		
Mass (g)	3.59	2.01		
Formula mass	159.6	18.0		
Number of moles of formula units (mol)	$3.59 / 159.6$ $=0.0225$	$2.01 / 18.0$		
Simplest whole number mole ratio	$0.0225 / 0.0225$ of formula units	$=1$		$0.112 / 0.0225$
:---:				

Since n should be a whole number, a reasonable value of n would be 5 .
(b) The experimental value of $\mathrm{n}(4.98)$ is lower than 5 . This might be due to two reasons:
(1) Not all water of crystallization has been removed in the heating process.
(2) The anhydrous salt has absorbed some moisture from the atmosphere during weighing.
10. Mass of C in the compound $=1.32 \times 12.0$
$12.0+16.0 \times 2$
$\mathrm{g}=0.36 \mathrm{~g}$
Mass of H in the compound $=0.45 \times 1.0 \times 2$
$1.0 \times 2+16.0$
$\mathrm{g}=0.05 \mathrm{~g}$
Mass of O in the compound $=(0.81-0.36-0.05) \mathrm{g}=0.40 \mathrm{~g}$
the empirical formula of the compound is $\mathrm{C} 6 \mathrm{H10O} 5$.
Let the molecular formula of the compound be (C6H10O5)n.
$320.0=n \times(12.0 \times 6+1.0 \times 10+16.0 \times 5)$
$\mathrm{n}=1.98 \quad 2$
the molecular formula of the compound is Cl 2 H 20 O 10 .
11. Assume that there are 100 g of the compound. Then, there are 40.00 g of carbon, 6.67 g of hydrogen and 53.33 g of oxygen.
the empirical formula of the compound is CH 2 O .
Let the molecular formula of the compound be $(\mathrm{CH} 2 \mathrm{O})$ n.
$60.0=n \times(12.0+1.0 \times 2+16.0)$
$\mathrm{n}=2$
the molecular formula of the compound is C 2 H 4 O 2 .
12. Assume that there are 100 g of Epsom salt. Then, there are 51.22 g
of water of crystallization and ($100-51.22$) $\mathrm{g}=48.78 \mathrm{~g}$ of MgSO4.
the value of n is 7 .
MgSO4 H2O
Mass (g) 48.7851 .22
Formula mass $24.3+32.1+16.0 \times 4=120.41 .0 \times 2+16.0=18.0$
Number of moles of
formula units (mol)
48.78
120.4
$=0.405151 .22$
18.0
$=2.85$
Simplest whole
number mole ratio of
formula units
0.4051
0.4051
= 12.85
0.4051
$=7.047$
CHO
Mass (g) 0.360 .050 .40
Relative
atomic mass
12.01 .016 .0

Number of
moles of
atoms (mol)
0.36
12.0
$=0.030 .05$
1.0
$=0.050 .40$
16.0
$=0.025$
Simplest
whole
number mole
ratio of atoms
0.03
0.025
= 1.20 .05
0.025
$=20.025$
0.025
$=1$
$1.2 \times 5=62 \times 5=101 \times 5=5$
CHO
Mass (g) 40.006 .6753 .33
Relative atomic
mass
12.01 .016 .0

Number of moles
of atoms (mol)
40.00
12.0
$=3.336 .67$
1.0
$=6.6753 .33$
16.0
$=3.33$
Simplest whole
number mole
ratio of atoms
3.33
3.33
$=16.67$
3.33
$=23.33$
3.33
$=1$

