Quiz (Calculation involving Chemical Equation)

1. Magnesium reacts with copper(II) oxide according to the following equation:
$\mathrm{Mg}(\mathrm{s})+\mathrm{CuO}(\mathrm{s}) \longrightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{Cu}(\mathrm{s})$
Calculate the mass of magnesium required to react completely with 7.95 g of copper(II) oxide.
(Relative atomic masses: $\mathrm{O}=16.0, \mathrm{Mg}=24.3, \mathrm{Cu}=63.5$)
2. Magnesium reacts with lead(II) oxide according to the following equation:
$\mathrm{Mg}(\mathrm{s})+\mathrm{PbO}(\mathrm{s}) \longrightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{Pb}(\mathrm{s})$
Calculate the mass of magnesium required to react completely with 10.55 g of lead(II) oxide.
(Relative atomic masses: $\mathrm{O}=16.0, \mathrm{Mg}=24.3, \mathrm{~Pb}=207.2$)
3. Lead(II) oxide reacts with carbon powder to give lead and carbon dioxide.
$2 \mathrm{PbO}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{~Pb}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$
Calculate the mass of lead formed when 44.6 g of lead(II) oxide has completely reacted.
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{~Pb}=207.2$)
4. Sodium reacts with water to give sodium hydroxide and hydrogen according to the following equation:

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Calculate the mass of hydrogen formed when 8.51 g of sodium reacts completely with water.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
5. Calculate the mass of zinc formed when 8.14 g of zinc oxide are heated with 2.20 g of carbon powder.
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Zn}=65.4$)
6. Calculate the mass of nitrogen dioxide formed when 26.58 g of nitrogen monoxide reacts with 8.06 g of oxygen according to the following equation: $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
(Relative atomic masses: $\mathrm{N}=14.0, \mathrm{O}=16.0$)
7. In an experiment, 15.9 g of copper(II) oxide was heated with 0.60 g of hydrogen according to the following reaction:
$\mathrm{CuO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$ (l)
(a) Calculate the theoretical yield of copper.
(b) Given the percentage yield of copper is 82%. Calculate the actual yield of copper.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Cu}=63.5$)
8. Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ can be produced from carbon monoxide and hydrogen according to the following equation: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(a) Calculate the theoretical yield of methanol when 430 g hydrogen reacts with excess carbon monoxide.
(b) Given the percentage yield of methanol is 45%, calculate the actual yield of methanol.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
9. Upon strong heating, silver oxide decomposes to silver and oxygen. Calculate the mass of silver obtained when 6.96 g of silver oxide is strongly heated in air. (Relative atomic masses: $\mathrm{O}=16.0, \mathrm{Ag}=107.9$)
10. Titanium can be prepared by the reaction of titanium(IV) chloride with molten magnesium.
$\mathrm{TiCl}_{4}(\mathrm{~g})+2 \mathrm{Mg}(\mathrm{I}) \longrightarrow \mathrm{Ti}(\mathrm{s})+2 \mathrm{MgCl}_{2}(\mathrm{I})$
Calculate the mass of titanium obtained when $5.42 \times 10^{6} \mathrm{~g}$ of magnesium were allowed to react with $1.77 \times 10^{7} \mathrm{~g}$ of titanium(IV) chloride.
(Relative atomic masses: $\mathrm{Mg}=24.3, \mathrm{Cl}=35.5, \mathrm{Ti}=47.9$)
11. A student performed the following experiment to prepare calcium hydroxide. 1.50 g of calcium granules was dissolved in a large amount of water. The calcium hydroxide precipitate was then filtered off, washed and dried.
(a) Write an equation for the reaction of calcium with water.
(b) Calculate the theoretical mass of calcium hydroxide obtained.
(c) The mass of calcium hydroxide obtained from the experiment was much less than the theoretical value. Explain why there was such a difference.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Ca}=40.1$)

Suggested Answer

1. $\mathrm{Mg}(\mathrm{s})+\mathrm{CuO}(\mathrm{s}) \longrightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{Cu}(\mathrm{s})$

Molar mass of $\mathrm{CuO}=63.5+16.0=79.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $\mathrm{CuO}=7.95 / 79.5=0.100 \mathrm{~mol}$

From the equation, mole ratio of $\mathrm{Mg}: \mathrm{CuO}=1: 1$.
$\therefore \quad$ number of moles of $\mathrm{Mg}=0.100 \mathrm{~mol}$
Mass of Mg required $=0.100 \times 24.3=2.43 \mathrm{~g}$
2. Molar mass of $\mathrm{PbO}=207.2+16.0=223.2 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of moles of $\mathrm{PbO}=10.55 / 223.2=0.0473 \mathrm{~mol}$
From the equation, mole ratio of Mg to PbO is $1: 1$.
\therefore number of moles of Mg required $=0.0473 \mathrm{~mol}$
Mass of Mg required $=0.0473 \times 24.3=1.15 \mathrm{~g}$
3. $2 \mathrm{PbO}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{~Pb}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$

Molar mass of $\mathrm{PbO}=207.2+16.0=223.2 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of PbO reacted $=44.6 / 223.2=0.200 \mathrm{~mol}$

From the equation, mole ratio of $\mathrm{PbO}: \mathrm{Pb}=2: 2=1: 1$.
\therefore number of moles of $\mathrm{Pb}=0.200 \mathrm{~mol}$

Mass of Pb formed $=0.200 \times 207.2=41.4 \mathrm{~g}$
4. Number of moles of Na reacted $=8.51 / 23.0=0.37 \mathrm{~mol}$

From the equation, mole ratio of Na to H_{2} is 2 : 1 .
\therefore number of moles of H_{2} formed $=0.37 / 2=0.185 \mathrm{~mol}$
Mass of H_{2} produced $=0.185 \times 1.0 \times 2=0.37 \mathrm{~g}$
5. $2 \mathrm{ZnO}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{Zn}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

Molar mass of $\mathrm{ZnO}=65.4+16.0=81.4 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $\mathrm{ZnO}=8.14 / 81.4=0.100 \mathrm{~mol}$
Number of moles of $C=2.20 / 12.0=0.183 \mathrm{~mol}$
From the equation, mole ratio of $\mathrm{ZnO}: \mathrm{C}=2: 1$.
$\therefore \quad 0.100 \mathrm{~mol}$ of ZnO would react with $0.100 / 2=0.0500 \mathrm{~mol}$ of C
Since 0.183 mol of C is heated, C is in excess.
ZnO is the limiting reactant in this case, as it is all used up.
From the equation, mole ratio of $\mathrm{ZnO}: \mathrm{Zn}=2: 2=1: 1$.
$\therefore \quad$ number of moles of Zn formed $=0.100 \mathrm{~mol}$
$\therefore \quad$ Mass of Zn formed $=0.100 \times 65.4=6.54 \mathrm{~g}$
6. Molar mass of $\mathrm{NO}=14.0+16.0=30.0 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of moles of $\mathrm{NO}=26.58 / 30.0=0.886 \mathrm{~mol}$
Molar mass of $\mathrm{O}_{2}=16.0 \times 2=32.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $\mathrm{O}_{2}=8.06 / 32.0=0.252 \mathrm{~mol}$
From the equation, mole ratio of NO to $\mathrm{O}_{2}=2: 1$.
$\therefore \mathrm{O}_{2}$ is the limiting reactant.
Molar mass of $\mathrm{NO}_{2}=14.0+16.0 \times 2=46.0 \mathrm{~g} \mathrm{~mol}^{-1}$
From the equation, mole ratio of O_{2} to $\mathrm{NO}_{2}=1: 2$.
$\therefore \quad$ Number of moles of NO_{2} formed $=0.252 \times 2=0.504 \mathrm{~mol}$
Mass of NO_{2} formed $=0.504 \times 46.0=23.2 \mathrm{~g}$
7. (a) $\mathrm{CuO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$ (I)

Molar mass of $\mathrm{CuO}=63.5+16.0=79.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $\mathrm{CuO}=15.9 / 79.5=0.20 \mathrm{~mol}$
Molar mass of $\mathrm{H}_{2}=1.0 \times 2=2.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of $\mathrm{H}_{2}=0.60 / 2.0=0.30 \mathrm{~mol}$
From the equation, mole ratio of $\mathrm{CuO}: \mathrm{H}_{2}=1: 1$.
$\therefore \quad 0.20 \mathrm{~mol}$ of CuO would react with 0.20 mol of H_{2}.
Since 0.30 mol of H_{2} is heated, H_{2} is in excess.
CuO is the limiting reactant in this case, as it is all used up.
From the equation, mole ratio of $\mathrm{CuO}: \mathrm{Cu}=1: 1$.
\therefore number of moles of Cu formed $=0.20 \mathrm{~mol}$
$\therefore \quad$ theoretical yield of $\mathrm{Cu}=0.20 \times 63.5=12.7 \mathrm{~g}$
(b) Actual yield of $\mathrm{Cu}=$ theoretical yield \times percentage yield $=12.7 \mathrm{~g} \times 82 \%$ $=10.4 \mathrm{~g}$
8. (a) Number of moles of $\mathrm{H}_{2}=430 /(1.0 \times 2)=215 \mathrm{~mol}$

Molar mass of $\mathrm{CH}_{3} \mathrm{OH}=12.0+1.0 \times 4+16.0=32.0 \mathrm{~g} \mathrm{~mol}^{-1}$
From the equation, mole ratio of H_{2} to $\mathrm{CH}_{3} \mathrm{OH}=2: 1$.
\therefore number of moles of $\mathrm{CH}_{3} \mathrm{OH}$ produced $=215 / 2=107.5 \mathrm{~mol}$
Theoretical yield of $\mathrm{CH}_{3} \mathrm{OH}=107.5 \times 32.0=3440 \mathrm{~g}$
(b) Actual yield of $\mathrm{CH}_{3} \mathrm{OH}=3440 \times 45 \%=1548 \mathrm{~g}$
9. $2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow 4 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$

Number of moles of $\mathrm{Ag}_{2} \mathrm{O}$ used $=6.96 /(107.9 \times 2+16.0)=0.0300 \mathrm{~mol}$
From the equation, mole ratio of $\mathrm{Ag}_{2} \mathrm{O}$ to Ag is $1: 2$.
\therefore number of moles of Ag produced $=0.0300 \times 2=0.0600 \mathrm{~mol}$
Mass of Ag produced $=0.0600 \times 107.9=6.47 \mathrm{~g}$
10. Number of moles of Mg used $=5.42 \times 10^{6} / 24.3=223045 \mathrm{~mol}$

Number of moles of TiCl_{4} used $=1.77 \times 10^{7} /(47.9+35.5 \times 4)=93207 \mathrm{~mol}$ From the equation, mole ratio of TiCl_{4} to Mg is $1: 2$.
$\therefore \quad \mathrm{TiCl}_{4}$ is the limiting reactant.
From the equation, mole ratio of TiCl_{4} to Ti is $1: 1$.
number of moles of Ti formed $=93207 \mathrm{~mol}$

Mass of Ti formed $=93207 \times 47.9=4464615 \mathrm{~g}$
11. (a) $\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})$
(b) Number of moles of Ca used $=1.50 / 40.1=0.0374 \mathrm{~mol}$

From the equation, mole ratio of Ca to $\mathrm{Ca}(\mathrm{OH})_{2}=1: 1$.
\therefore number of moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ formed $=0.0374 \mathrm{~mol}$
Theoretical mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ formed
$=0.0374 \times[40.1+(16.0+1.0) \times 2]=2.77 \mathrm{~g}$
(c) Possible reasons:
i) The calcium used was impure (Covered by a layer of calcium oxide).
ii) Some calcium hydroxide was lost during filtration (Calcium hydroxide is slightly soluble in water).

