Quiz (Basic Chemical Calculation 1)

Section A: Multiple-choice

 The haemoglobin in mammals contains 0.33% by mass of iron. Given that the molar mass of a haemoglobin molecule is 68 000, how many iron atoms are there in a haemoglobin molecule? (Relative atomic mass: Fe = 55.8)
 A. 2
 B. 3
 C. 4
 D. 5

2. Which of the following gases has the least number of atoms? (Relative atomic masses: C = 12.0, O = 16.0, Ne = 20.2, S = 32.1, Cl = 35.5)
A. 2.0 g of chlorine
B. 4.0 g of carbon dioxide
C. 6.0 g of sulphur dioxide
D. 8.0 g of neon

3. Iron(III) oxide is reduced by carbon to give iron. Let w be the relative atomic mass of iron. In an experiment x g of iron(III) oxide is reduced to y g of iron. Which of the following is the correct expression of w? (Relative atomic mass: O = 16.0)

A.	$\underline{24.0 \times y}$	В.	x-y
	x - y		$16.0 \times y$
C.	x-y	D.	$16.0 \times (x-y)$
	$24.0 \times y$		У

4. A mixture of sodium sulphate and copper(II) sulphate contains three moles of sulphate ions and one mole of copper(II) ions. How many moles of sodium ions are there in the mixture?

Α.	1	Β.	2
C.	3	D.	4

5. The relative atomic mass of metal X is 27.0. One mole of metal X burns completely in pure oxygen to form 51.0 g of the oxide. The empirical formula of the oxide is

(Re	elative atomic mass: O = 16.0)		
Α.	X ₂ O.	Β.	$X_2O_2.$
C.	X ₂ O ₃ .	D.	X ₃ O ₂ .

- 6. Which of the following nitrides has the greatest percentage by mass of nitrogen? (Relative atomic masses: Li = 6.9, N = 14.0, Na = 23.0, Mg = 24.3, Al = 27.0)
 - A.
 Li₃N
 B.
 Na₃N

 C.
 Mg₃N₂
 D.
 AIN
- 7. 5.60 g of hydrocarbon Y is burnt completely to give 17.0 g of carbon dioxide. What is the empirical formula of Y? (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)

1		·	,
Α.	CH ₃	В.	C_2H_5
C.	C ₂ H ₆	D.	C_4H_{10}

- A metal carbonate XCO₃ contains 52.2% by mass of the metal. The metal is 8. probably
 - (Relative atomic masses: C = 12.0, O = 16.0)
 - A. potassium. Β.
 - C. nickel.
- Which of the following statements about 1 dm³ of neon and 1 dm³ of fluorine 9. is/are correct?
 - (1) They contain the same number of atoms.
 - (2) They contain the same number of molecules.
 - (3) They have the same mass.
 - A. (1) only
 - C. (1) and (3) only
- 10. What is the volume of 11 g carbon dioxide at room temperature and pressure? (Relative atomic masses: C = 12.0, O = 16.0; molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)
 - A. 0.5 dm³ 3.0 dm³ Β. C. 6.0 dm³ D. 24.0 dm³
- 11. The complete combustion of hydrocarbons gives carbon dioxide and water. What is the volume of gas formed (measured at room temperature and pressure) when 11.4 g of octane (C_8H_{18}) is burned completely at room temperature and pressure?

(Relative atomic masses: H = 1.0, C = 12.0; molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)

Α.	9.6 dm ³	В.	19.2 dm ³
C.	21.6 dm ³	D.	40.8 dm ³

12. Consider the following gases:

(2) 8 g of helium (1) 3 g of hydrogen (3) 12 g of oxygen Which of the following is the descending order of the volume occupied by the gases at room temperature and pressure? (Relative atomic masses: H = 1.0, He = 4.0, O = 16.0)

- A. (2) > (1) > (3)B. (1) > (2) > (3)C. (1) > (3) > (2)D. (3) > (1) > (2)
- 13. Which of the following gaseous mixture contains the largest number of atoms? (Assume that there is no reaction between the two gases; relative atomic masses: H = 1.0, He = 4.0, C = 12.0, N = 14.0, O = 16.0, S = 32.1, CI = 35.5)
 - A. 500 cm³ of ammonia and 250 cm³ of helium
 - B. 1 dm³ of hydrogen and 1 dm³ of hydrogen chloride
 - C. 5 g of sulphur dioxide and 5 g of nitrogen dioxide
 - D. 2 g of carbon dioxide and 2 g of nitrogen

- calcium.
- D. zinc.
- (2) only Β.
- D. (2) and (3) only

Questions 14 and 15 refer to the production of acetylene through the reaction between calcium carbide (CaC_2) and water.

- 14. Which of the following equations represents the reaction between calcium carbide and water?
 - A. $CaC_2(s) + H_2O(I) \longrightarrow C_2H_2(g) + CaO_2(s)$
 - B. $CaC_2(s) + 2H_2O(I) \longrightarrow C_2H_4(g) + Ca(OH)_2(aq)$
 - C. $CaC_2(s) + 2H_2O(I) \longrightarrow C_2H_4(g) + CaO(s)$
 - D. $CaC_2(s) + 2H_2O(I) \longrightarrow C_2H_2(g) + Ca(OH)_2(aq)$
- 15. What is the volume of acetylene formed (measured at room temperature and pressure) when 6.4 g of calcium carbide is added to 25.0 cm³ of water? (Relative atomic masses: C = 12.0, Ca = 40.1; density of water = 1.0 g cm⁻³; molar volume of gas at room temperature and pressure = 24.0 dm³ mol⁻¹)
 - A. 0.12 cm^3

- B. 0.24 cm³
- C. 120 cm³ D. 240 cm³

Section B: Structured questions

- Xenon trioxide (XeO₃) is an unstable compound. It reacts with barium hydroxide (Ba(OH)₂) in alkaline medium to form a white substance. The white substance has the following percentage composition by mass:
 - Ba: 64.4% Xe: 20.5% O: 15.1%
 - (a) Deduce the empirical formula of the white substance.
 (Relative atomic masses: O = 16.0, Xe = 131.3, Ba = 137.3)
 - (b) Write a chemical equation for the formation of the white substance.
- 31.2 g of hydrated aluminium oxide (Al₂O₃ xH₂O) is heated to a constant mass of 20.2 g. Calculate the value of x. (Relative atomic masses: H = 1.0, O = 16.0, Al = 27.0)
- 3. One mole of ethane (C₂H₆) burns in the air under room temperature and pressure. Carbon dioxide and water vapour are formed.
 - (a) Write a balanced chemical equation for the above reaction.
 - (b) Calculate the volume of oxygen gas required for this reaction.
 - (c) Calculate the volume of carbon dioxide gas formed for this reaction.

(Molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)

Suggested Answer

Section A

1.	С	6.	А	11.	В
2.	А	7.	В	12.	А
3.	А	8.	D	13.	С
4.	D	9.	В	14.	D
5.	С	10.	С	15.	D

Section **B**

1. (a) Assume there is 100 g of the white substance.

	Ba	Хе	0
Mass (g)	64.4	20.5	15.1
Number of moles of	64.4 / 137.3	20.5 / 131.3	15.1 / 16.0
atoms (mol)	= 0.469	= 0.156	= 0.944
Molo ratio of atoms	0.469 / 0.156	0.156 / 0.156	0.9444 / 0.156
	= 3	= 1	= 6

- \therefore the empirical formula of the white substance is Ba₃XeO₆.
- (b) $3Ba(OH)_3 + XeO_3 \longrightarrow Ba_3XeO_6 + 3H_2O$

2.

	Al ₂ O ₃	H₂O
Mass (g)	20.2	31.2 - 20.2 = 11.0
Number of moles of	20.2 / (27.0 x 2 + 16.0 x 3)	11.0 / (1.0 x 2 + 16.0)
atoms (mol)	= 0.198	= 0.611
Mole ratio of atoms	0.198 / 0.198	0.611 / 0.198
Mole railo of alonis	= 1	= 3

∴ x = 3

- 3. (a) $2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(I)$
 - (b) Number of moles of $O_2(g)$ required = 1 / 2 x 7
 - = 3.5

Volume of $O_2(g)$ required = 3.5×24.0 = 84.0 dm^3 (c) Number of moles of $CO_2(g)$ formed

= 1 / 2 x 4

= 2

Volume of $CO_2(g)$ required = 2 x 24.0

= 48.0 dm³