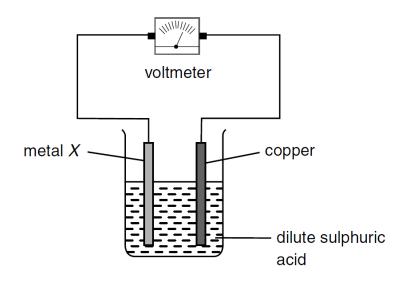
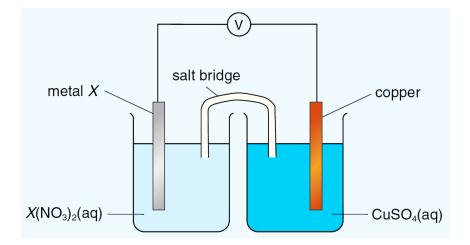

Quiz (Chemical Cell with Two Half Cells System)


1. Consider the chemical cell below:

- (a) State and explain the direction of electron flow in the external circuit when the cell operates.
- (b) Write half equations for the reactions taking place at
 - (i) the iron rod; and
 - (ii) the tin rod.
- (c) Write the overall equation for this chemical cell.
- (d)What would happen if no salt bridge was used to connect the two half cells?
- 2. Consider the following chemical cell:

- (a) State and explain the direction of electron flow in the external circuit when the cell operates.
- (b) Is the copper electrode the positive electrode or the negative electrode?
- (c) Write the half equation for the reaction taking place at each of the following electrodes when the cell operates:
 - (i) iron electrode
 - (ii) copper electrode
- (d) Write the overall equation for this chemical cell.
- (e) What would happen if the porous device with iron(II) nitrate solution was not used in the cell?
- 3. A simple chemical cell is set up as shown below.


The solution in the beaker turns pale green after some time.

- (a) Suggest what metal X may be.
- (b) What is the function of dilute sulphuric acid?
- (c) Briefly describe any observable changes at the copper electrode and write a half equation for the reaction involved.
- (d) (i) Write a half equation for the reaction occurring at metal X.
 - (ii) Explain why bubbles appear at metal X.
- (e) Explain why the voltmeter reading becomes zero when dilute sulphuric acid is replaced by pure sulphuric acid.

4. A portion of the Electrochemical Series is shown below:

Zn ²⁺ (aq)	+ 2e-	与	Zn(s)
X ²⁺ (aq)	+ 2e-	⇆	X(s)
Cu ²⁺ (aq)	+ 2e-	₽	C∪(s)
Ag+(aq)	+ e-	₽	Ag(s)

The following diagram shows a chemical cell set up by using a copper electrode and a metal X electrode.

- (a) State and explain the direction of electron flow in the external circuit.
- (b) Write a half equation for the reaction taking place at
 - (i) the copper electrode, and
 - (ii) the metal X electrode.
- (c) Write an equation to show the overall reaction in the above chemical cell.

Suggested Answer

- 1. (a) Electrons flow from the iron rod to the tin rod in the external circuit. This is because iron loses electrons more readily than tin.
 - (b) (i) Fe(s) \longrightarrow Fe²⁺(aq) + 2e⁻ (ii) Sn²⁺(aq) + 2e⁻ \longrightarrow Sn(s)
 - (c) $Fe(s) + Sn^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Sn(s)$
 - (d) There would be excess positive charges and excess negative charges in the right and left half cells respectively. As a result, the reaction would stop.
- (a) From iron electrode to copper electrode. This is because iron loses electrons more readily than copper.
 - (b) Positive electrode
 - (c) (i) Fe(s) \longrightarrow Fe²⁺(aq) + 2e⁻ (ii) Cu²⁺(aq) + 2e⁻ \longrightarrow Cu(s)
 - (d) $Fe(s) + Cu^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Cu(s)$
 - (e) If the porous device is not used, the copper(II) ions will come into contact with the iron electrode. A displacement reaction will occur on the iron deposits (copper) form on the iron electrode.
- 3. (a) Iron
 - (b) It acts as an electrolyte.
 - (c) Gas bubbles appear at the copper electrode. $2H^+(aq) + 2e^- \longrightarrow H_2(g)$
 - (d) (i) Fe(s) → Fe²⁺(aq) + 2e⁻
 (ii) Metal X (iron) reacts with dilute sulphuric acid and forms hydrogen gas.
 - (e) Pure sulphuric acid does not contain any ions to conduct electricity.
- (a) Electrons flow from metal X to copper in the external circuit. This is because metal X loses electrons more readily than copper / X is higher than copper in the Electrochemical series.
 - (b) (i) $Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$ (ii) $X(s) \longrightarrow X^{2+}(aq) + 2e^{-}$
 - (c) $X(s) + Cu^{2+}(aq) \longrightarrow X^{2+}(aq) + Cu(s)$