Quiz (Dilution)

1. $\quad 10.0 \mathrm{~cm}^{3}$ of 2.50 M sodium carbonate solution is diluted to $250.0 \mathrm{~cm}^{3}$ using distilled water. What is the molarity of the diluted sodium carbonate solution?
2. Describe briefly how to prepare $100.0 \mathrm{~cm}^{3}$ of 0.50 M sodium carbonate solution from 5.30 g of anhydrous sodium carbonate.
3. A student prepared $500.0 \mathrm{~cm}^{3}$ of 0.1 M standard ethanedioic acid solution by dissolving hydrated ethanedioic acid crystals $\left((\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in water.
(a) Calculate the mass of hydrated ethanedioic acid crystals needed.
(b) If the student weighed out 6.45 g of the crystals, calculate the molarity of the solution prepared.
(c) Is the solution prepared in (b) a standard solution? Explain your answer.
(d) To prepare $250.0 \mathrm{~cm}^{3}$ of 0.0150 M ethanedioic acid solution, what is the volume of the solution (as prepared in (b)) required for dilution?

Suggested Answer

1. (number of moles of $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}\right)_{\text {before dilution }}=\left(\text { number of moles of } \mathrm{Na}_{2} \mathrm{CO}_{3}\right)_{\text {after dilution, }}$, $M_{1} V_{1}=M_{2} V_{2}$
$2.50 \times 10.0 / 1000=M_{2} \times 250.0 / 1000$
$M_{2}=0.1$
$\therefore \quad$ the concentration of the diluted sodium carbonate solution is 0.1 M .
2. First, dissolve 5.30 g of anhydrous sodium carbonate in some distilled water in a beaker.

Then, transfer the solution to a $\mathbf{1 0 0 . 0} \mathbf{c m}^{\mathbf{3}}$ volumetric flask.

Wash the beaker and the glass rod with distilled water several times and pour all the washing to the volumetric flask.

Add distilled water up to the graduation mark of the volumetric flask.
Finally, stopper and invert the volumetric flask several times to mix the contents well.
3. (a) Number of moles of $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ needed
$=0.1 \times 500.0 / 1000$
$=0.05$

Mass of $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ needed
$=0.05 \times[2 \times(12.0+16.0 \times 2+1.0)+2 \times(1.0 \times 2+16.0)]$
$=6.3 \mathrm{~g}$
(b) Number of moles of $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ used
$=6.45 / 126.0$
$=0.0512$

Molarity of the solution prepared
$=0.0512$ / (500.0 / 1000)
$=0.102 \mathrm{~mol} \mathrm{dm}^{-3}$
(c) Yes. This is because the accurate molar concentration of the solution is known.
(d) Number of moles of ethanedioic acid (before dilution) $=$ Number of moles of ethanedioic acid (after dilution)
$M_{1} V_{1}=M_{2} V_{2}$
$0.102 \times V_{1}=0.0150 \times(250.0 / 1000)$
$V_{1}=0.0368$
$\therefore \quad$ the volume of the $0.102 \mathrm{~mol} \mathrm{dm}^{-3}$ solution needed is $36.8 \mathrm{~cm}^{3}$.

