Quiz (Basic Chemical Calculation II)

Section A: Multiple Choice

1. Which of the following apparatus are needed to dilute 25.0 cm³ of a standard solution to 250.0 cm³?

(1) 25.0 cm³ pipette

(2) 250.0 cm³ volumetric flask

(3) 250.0 cm³ conical flask

A. (1) and (2) only C. (2) and (3) only

B. (1) and (3) only

D. (1), (2) and (3)

2. What is the concentration of the resultant sodium carbonate solution when 10.0 cm³ of 0.80 M sodium carbonate solution is diluted to 250.0 cm³?

A. 0.016 M

B. 0.032 M

C. 0.040 M

D. 0.064 M

3. What is the mass of anhydrous sodium carbonate needed to prepare 250.0 cm³ of 0.150 M sodium carbonate solution?

(Relative atomic masses: C = 12.0, O = 16.0, Na = 23.0)

A. 1.50 g

B. 1.91 g

C. 3.11 g

D. 3.98 g

4. Which of the following apparatus is the most suitable for transferring 25.00 cm³ of solution?

A. Measuring cylinder

B. Pipette

C. Burette

D. Conical flask

Section B: Structural Question

1. 14.30 g of hydrated sodium carbonate Na₂CO₃•10H₂O(s) is dissolved in water and made up to 250.0 cm³ of solution. Calculate the molarity of the sodium carbonate solution.

(Relative atomic masses: H = 1.0, C = 12.0, O = 16.0, Na = 23.0)

2. Calculate the volume of 2.0 M hydrochloric acid required to prepare 250.0 cm³ of 0.15 M hydrochloric acid.

Suggested Answer

Section A

1.	A	3.	D
2.	В	4.	В

Section B

1. Number of moles of Na₂CO₃•10H₂O used = $14.30 / [(23.0 \times 2 + 12.0 + 16.0 \times 3) + 10 \times (1.0 \times 2 + 16.0)]$ = 0.05

1 mole of Na₂CO₃•10H₂O contains 1 mole of Na₂CO₃.

 \therefore number of moles of Na₂CO₃ in 250.0 cm³ solution = 0.05 mol

Molarity of the Na_2CO_3 solution = 0.05 / (250.0 / 1000) = 0.2 mol dm⁻³

2. Number of moles of HCI (before dilution) = Number of moles of HCI (after dilution)

$$M_1V_1=M_2V_2$$

$$2.0 \times V_1 = 0.15 \times (250.0 / 1000)$$

$$V_1 = 0.0188 \text{ dm}^3$$
 or 18.8 cm^3

: volume of 2.0 M HCl(aq) required is 18.8 cm³.