Quiz (Basic Chemical Calculation II)

Section A: Multiple Choice

1. Which of the following apparatus are needed to dilute 25.0 cm 3 of a standard solution to $250.0 \mathrm{~cm}^{3}$?
(1) $25.0 \mathrm{~cm}^{3}$ pipette
(2) $250.0 \mathrm{~cm}^{3}$ volumetric flask
(3) $250.0 \mathrm{~cm}^{3}$ conical flask
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
2. What is the concentration of the resultant sodium carbonate solution when 10.0 cm^{3} of 0.80 M sodium carbonate solution is diluted to $250.0 \mathrm{~cm}^{3}$?
A. 0.016 M
B. $\quad 0.032 \mathrm{M}$
C. 0.040 M
D. 0.064 M
3. What is the mass of anhydrous sodium carbonate needed to prepare $250.0 \mathrm{~cm}^{3}$ of 0.150 M sodium carbonate solution?
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
A. $\quad 1.50 \mathrm{~g}$
B. $\quad 1.91 \mathrm{~g}$
C. 3.11 g
D. 3.98 g
4. Which of the following apparatus is the most suitable for transferring $25.00 \mathrm{~cm}^{3}$ of solution?
A. Measuring cylinder
B. Pipette
C. Burette
D. Conical flask

Section B: Structural Question

1. 14.30 g of hydrated sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 1 \mathrm{OH}_{2} \mathrm{O}$ (s) is dissolved in water and made up to $250.0 \mathrm{~cm}^{3}$ of solution. Calculate the molarity of the sodium carbonate solution.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
2. Calculate the volume of 2.0 M hydrochloric acid required to prepare $250.0 \mathrm{~cm}^{3}$ of 0.15 M hydrochloric acid.

Suggested Answer

Section A

1.	A	3.	D
2.	B	4.	B

Section B

1. Number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ used
$=14.30 /[(23.0 \times 2+12.0+16.0 \times 3)+10 \times(1.0 \times 2+16.0)]$
$=0.05$
1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ contains 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
\therefore number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $250.0 \mathrm{~cm}^{3}$ solution $=0.05 \mathrm{~mol}$
Molarity of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution
$=0.05 /(250.0 / 1000)$
$=0.2 \mathrm{~mol} \mathrm{dm}^{-3}$
2. Number of moles of HCl (before dilution) $=$ Number of moles of HCl (after dilution)

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$2.0 \times V_{1}=0.15 \times(250.0 / 1000)$
$V_{1}=0.0188 \mathrm{dm}^{3} \quad$ or $18.8 \mathrm{~cm}^{3}$
$\therefore \quad$ volume of $2.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ required is $18.8 \mathrm{~cm}^{3}$.

