S4 Chemistry Quiz

- 1. 25.0 cm³ of 0.20 M sulphuric acid is completely neutralized by 15.5 cm³ of sodium hydroxide solution. What is the resultant concentration of sodium hydroxide solution?
- 2. 25.0 cm³ of ammonia solution was titrated with 0.05 M hydrochloric acid. The following table shows the results of titration.

	Titration 1	Titration 2	Titration 3	Titration 4
Final reading (cm ³)	2.70	3.60	11.10	9.80
Initial reading (cm ³)	37.70	35.70	43.30	42.00

What is the molarity of ammonia solution?

Suggested Answer

- 1. $H_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(I)$ Number of moles of H_2SO_4 used = 0.20 x 0.025 = 0.005 From the equation, mole ratio of H_2SO_4 : NaOH = 1 : 2. \therefore number of moles of NaOH = 0.005 x 2 = 0.01 Concentration of NaOH = 0.01 / 0.015 = 0.667 M
- 2. Volume of HCl used = [(35.70 3.60) + (43.30 11.10) + (42.00 9.80)] / 3= 32.17 cm³ NH₃(aq) + HCl(aq) \longrightarrow NH₄Cl(aq) Number of moles of HCl used = number of moles of NH₃ reacted = 0.05 x 0.03217 = 1.61 × 10⁻³ Molarity of NH₃ = 1.61 x 10⁻³ / 0.025 = 0.0643 M