S4 Chemistry Quiz

1. $25.0 \mathrm{~cm}^{3}$ of 0.20 M sulphuric acid is completely neutralized by $15.5 \mathrm{~cm}^{3}$ of sodium hydroxide solution. What is the resultant concentration of sodium hydroxide solution?
2. $25.0 \mathrm{~cm}^{3}$ of ammonia solution was titrated with 0.05 M hydrochloric acid. The following table shows the results of titration.

	Titration 1	Titration 2	Titration 3	Titration 4
Final reading $\left(\mathrm{cm}^{3}\right)$	2.70	3.60	11.10	9.80
Initial reading $\left(\mathrm{cm}^{3}\right)$	37.70	35.70	43.30	42.00

What is the molarity of ammonia solution?

Suggested Answer

1. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ (I)

Number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=0.20 \times 0.025=0.005$
From the equation, mole ratio of $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{NaOH}=1: 2$.
\therefore number of moles of $\mathrm{NaOH}=0.005 \times 2=0.01$
Concentration of $\mathrm{NaOH}=0.01 / 0.015=0.667 \mathrm{M}$
2. Volume of HCl used $=[(35.70-3.60)+(43.30-11.10)+(42.00-9.80)] / 3$ $=32.17 \mathrm{~cm}^{3}$
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
Number of moles of HCl used $=$ number of moles of NH_{3} reacted
$=0.05 \times 0.03217$
$=1.61 \times 10^{-3}$
Molarity of $\mathrm{NH}_{3}=1.61 \times 10^{-3} / 0.025$
$=0.0643 \mathrm{M}$

