## Volumetric Analysis

A student was given 14.0 g of a dibasic acid $\left(\mathrm{H}_{2} \mathrm{X}\right)$. The dibasic acid was dissolved in water and made up to a $250.0 \mathrm{~cm}^{3}$ solution. $25.0 \mathrm{~cm}^{3}$ of the solution were titrated against $0.450 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution with phenolphthalein as indicator. $32.0 \mathrm{~cm}^{3}$ of the alkali were required to reach the end point.
(a) What is the meaning of the term 'dibasic acid'? Give an example of dibasic acid.
(b) Write a chemical equation for the reaction between the dibasic acid solution and sodium hydroxide solution.
(c) Briefly describe the procedure that should be followed to prepare a burette containing the sodium hydroxide solution for the titration.
(d) State the colour change of the indicator at the end point.
(e) Calculate the molar mass of the dibasic acid.
(f) In the titration, the $0.450 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution was used as a standard solution.
(i) What does the term 'standard solution' mean?
(ii) Comment whether it is appropriate to prepare a standard solution of sodium hydroxide by the following procedure:
'Weigh a sample of solid sodium hydroxide, dissolve it in some distilled water and make up to a known volume of solution.'

## Suggested Answer

A student was given 14.0 g of a dibasic acid $\left(\mathrm{H}_{2} \mathrm{X}\right)$. The dibasic acid was dissolved in water and made up to a $250.0 \mathrm{~cm}^{3}$ solution. $25.0 \mathrm{~cm}^{3}$ of the solution were titrated against $0.450 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution with phenolphthalein as indicator. $32.0 \mathrm{~cm}^{3}$ of the alkali were required to reach the end point.
(a) What is the meaning of the term 'dibasic acid'? Give an example of dibasic acid.

An acid that can produce two hydrogen ions per molecule.
Example: sulphuric acid / sulphurous acid
(b) Write a chemical equation for the reaction between the dibasic acid solution and sodium hydroxide solution.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{X}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{X}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{1}
\end{equation*}
$$

(c) Briefly describe the procedure that should be followed to prepare a burette containing the sodium hydroxide solution for the titration.
[3]
Wash / Rinse the burette first with distilled / deionized water and then with the
sodium hydroxide solution.1

Clamp the burette vertically in a stand. Close the stopcock. Fill the burette with the alkali through a filter funnel.

Open the stopcock for a few seconds so as to fill the tip of the burette with alkali.
(d) State the colour change of the indicator at the end point.

From colourless to pink.
(e) Calculate the molar mass of the dibasic acid.
$\mathrm{H}_{2} \mathrm{X}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{X}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
No. of moles of NaOH in $32.0 \mathrm{~cm}^{3}$ solution
$=0.450 \times 0.032$
$=0.0144$

No. of moles of $\mathrm{H}_{2} \mathrm{X}$ in $25.0 \mathrm{~cm}^{3}$ solution
= 0.0144 / 2
$=0.00720$

No. of moles of $\mathrm{H}_{2} \mathrm{X}$ in $250.0 \mathrm{~cm}^{3}$ solution
$=0.00720 \times 250 / 25$
$=0.0720$

Molar mass of $\mathrm{H}_{2} \mathrm{X}$
= 14.0 / 0.0720
$=194 \mathrm{~g} \mathrm{~mol}^{-1}$
(f) In the titration, the $0.450 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution was used as a standard solution.
(i) What does the term 'standard solution' mean?

A solution of known concentration.
(ii) Comment whether it is appropriate to prepare a standard solution of sodium hydroxide by the following procedure:
'Weigh a sample of solid sodium hydroxide, dissolve it in some distilled water and make up to a known volume of solution.'

Not appropriate as sodium hydroxide absorbs moisture in air readily. 1

