Quiz (Temperature change during Neutralization)

The following combinations of acids and alkalis are mixed together.
(i) $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{M} \mathrm{HCl}+50 \mathrm{~cm}^{3}$ of 1.0 M NaOH
(ii) $100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{M} \mathrm{HNO}_{3}+100 \mathrm{~cm}^{3}$ of 1.0 M NaOH
(iii) $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{M} \mathrm{HNO}_{3}+75 \mathrm{~cm}^{3}$ of 2.0 M NaOH
(iv) $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+25 \mathrm{~cm}^{3}$ of 2.0 M NaOH
(a) Which combination releases the largest amount of heat? Explain.
(b) Which combination gives the highest temperature rise? Explain your answer.

Suggested Answer

Table:

Case	No. of mole of \mathbf{H}^{+}	No. of mole of OH $^{-}$	No. of mole of water formed during neutralization	Total volume of reaction mixture $/ \mathrm{dm}^{3}$	Ratio $(\mathrm{m} / \mathrm{V})$	Temp. change
(i)	0.05	0.05	0.05	0.10	$1 / 2$	T
(ii)	0.10	0.10	0.10	0.20	$1 / 2$	T
(iii)	0.05	0.15				
(Excess)	0.05	0.10	$1 / 2$	T		
(iv)	0.10					
(Excess)	0.05	0.05	0.05	1	$2 T$	

(a) Case (ii), highest number of moles of water formed.
(b) Case (iv), No. of moles of water formed : Volume of reaction mixture is the highest.

