Quiz (Equilibrium Constant and Reaction Quotient)

1. The following equilibrium was established in a 1 dm³ sealed container at a certain temperature.

 $PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$ $K_{c} = 4.16 \times 10^{-2} \text{ mol dm}^{-3}$

However, the equilibrium has been disturbed and there are now 0.45 mol of $PCl_5(g)$, 0.15 mol of $PCl_3(g)$ and 0.15 mol of $Cl_2(g)$.

- (a) Explain what would happen to the position of equilibrium in terms of the value of reaction quotient.
- (b) Calculate the equilibrium concentrations when a new state of equilibrium was established.
- 2. Consider the dissociation of water: H₂O(I) \rightleftharpoons H⁺(aq) + OH⁻(aq)

The values of equilibrium constant is 1.00×10^{-14} at 25°C mol² dm⁻⁶ and 2.95 × 10^{-14} mol² dm⁻⁶ at 40°C. Calculate the neutral pH at 25 °C and 40 °C.

Suggested Answer

1. (a)
$$Q_c = (0.15)(0.15) / 0.45$$

= 0.05 mol dm⁻³

As $Q_c > K_c$, there is net Backward Reaction, the equilibrium position shifts to the left.

(b) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) \\ 0.45 + x \qquad 0.15 - x \qquad 0.15 - x$

$$\begin{split} &K_c = 0.0416 = (0.15 - x)^2 / (0.45 + x) \\ &x^2 - 0.3416 x + 0.00378 = 0 \\ &x = 0.01145 \quad \text{or} \quad x = 0.3302 \text{ (reject)} \end{split}$$

 $\begin{array}{ll} [PCl_3] &= 0.15 - 0.01145 = 0.1386 \ mol \ dm^{-3} \\ [Cl_2] &= 0.15 - 0.01145 = 0.1386 \ mol \ dm^{-3} \\ [PCl_5] &= 0.45 + 0.01145 = 0.4615 \ mol \ dm^{-3} \end{array}$

2. Neutral: [H⁺] = [OH⁻]

At 25°C, $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$ 1 – x x Х $x^2 / (1 - x) = 1 \times 10^{-14}$ \Rightarrow x = 1 x 10⁻⁷ \Rightarrow [H⁺] = 1 x 10⁻⁷ mol dm⁻³ $pH = - \log [H^+] = 7$ A† 40°C, $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$ 1-y y У $y^2 / (1 - y) = 2.95 \times 10^{-14}$ \Rightarrow y = 1.718 x 10⁻⁷ \Rightarrow [H⁺] = 1.718 x 10⁻⁷ mol dm⁻³ $pH = - \log [H^+] = 6.77$