Quiz (Equilibrium Constant and Reaction Quotient)

1. The following equilibrium was established in a $1 \mathrm{dm}^{3}$ sealed container at a certain temperature.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=4.16 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}
$$

However, the equilibrium has been disturbed and there are now 0.45 mol of $\mathrm{PCl}_{5}(\mathrm{~g}), 0.15 \mathrm{~mol}$ of $\mathrm{PCl}_{3}(\mathrm{~g})$ and 0.15 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$.
(a) Explain what would happen to the position of equilibrium in terms of the value of reaction quotient.
(b) Calculate the equilibrium concentrations when a new state of equilibrium was established.
2. Consider the dissociation of water:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
The values of equilibrium constant is 1.00×10^{-14} at $25^{\circ} \mathrm{C} \mathrm{mol}^{2} \mathrm{dm}^{-6}$ and $2.95 \times$ $10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $40^{\circ} \mathrm{C}$. Calculate the neutral pH at $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Suggested Answer

1. (a) $Q_{c}=(0.15)(0.15) / 0.45$
$=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$
As $Q_{c}>K_{c}$, there is net Backward Reaction, the equilibrium position shifts to the left.
(b) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$0.45+x$
0.15 - x
$0.15-\mathrm{x}$
$\mathrm{K}_{\mathrm{c}}=0.0416=(0.15-\mathrm{x})^{2} /(0.45+\mathrm{x})$
$x^{2}-0.3416 x+0.00378=0$
$x=0.01145$ or $\quad x=0.3302$ (reject)
$\left[\mathrm{PCl}_{3}\right]=0.15-0.01145=0.1386 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{Cl}_{2}\right] \quad=0.15-0.01145=0.1386 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{PCl}_{5}\right]=0.45+0.01145=0.4615 \mathrm{~mol} \mathrm{dm}^{-3}$
2. Neutral: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

At $25^{\circ} \mathrm{C}, \quad \underset{\mathrm{l}, \mathrm{x}}{\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \underset{\mathrm{H}}{+}(\mathrm{aq})+\underset{\mathrm{O}}{\mathrm{OH}^{-}(\mathrm{aq})}}$
$x^{2} /(1-x)=1 \times 10^{-14}$
$\Rightarrow \quad x=1 \times 10^{-7}$
$\Rightarrow \quad\left[\mathrm{H}^{+}\right]=1 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=7$

At $40^{\circ} \mathrm{C}, \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$1-y \quad y \quad y$
$y^{2} /(1-y)=2.95 \times 10^{-14}$
$\Rightarrow y=1.718 \times 10^{-7}$
$\Rightarrow \quad\left[\mathrm{H}^{+}\right]=1.718 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=6.77$

