Summary Quiz (Chapter 40)

Section A: Multiple Choice

- 1. Which of the following compounds is a white solid at room temperature?
 - A. $CUSO_4(s)$

- B. $PbCrO_4(s)$ D. $MnO_2(s)$
- C. $Fe(OH)_3(s)$
- 2. Chromium and cobalt are in the first transition series in the Periodic Table. Which of the following statements about chromium and cobalt is INCORRECT?
 - A. They conduct electricity at room temperature.
 - B. They are reducing agents.
 - C. They react vigorously with cold water to form hydrogen.
 - D. Their compounds are usually coloured.
- 3. Which of the following metals forms more than one type of simple cations?
 - A. Lithium B. Magnesium
 - C. Scandium D. Vanadium
- 4. Which of the following statements about copper is INCORRECT?
 - A. It is a reddish brown solid at room temperature.
 - B. It forms only one type of simple ion.
 - C. It reacts with concentrated sulphuric acid to give a blue solution.
 - D. It can be used to make electric cables.
- 5. Which of the following transition metals is/are used as the catalyst in catalytic converters?

	(1) Platinum	(2) Vanadium	(3) Rhodium
Α.	(1) only	В.	(2) only
C.	(1) and (3) only	D.	(2) and (3) only

6. Which of the following combinations about the colours of chromium-containing ions are correct?

		Chromium-containing ions	<u>Colour</u>	
	(1)	Cr ³⁺ (aq)	Green	
	(2)	CrO4 ²⁻ (aq)	Yellow	
	(3)	Cr ₂ O ₇ ²⁻ (aq)	Orange	
Α.	(1) ar	nd (2) only	B. (1) and ((3)
\sim	(0)			

- C. (2) and (3) only
- only D. (1), (2) and (3)
- 7. Which of the following combinations is INCORRECT?

	Industrial and chemical process	<u>Catalyst used</u>
Α.	Decomposition of H ₂ O ₂	MnO ₂
Β.	Manufacture of SO $_3$ from SO $_2$ and O $_2$	V
C.	Manufacture of NH $_3$ from N $_2$ and H $_2$	Fe
D.	Oxidation of I ⁻ (aq) by S ₂ O ₈ ^{2–} (aq)	Fe ³⁺

8. Which of the following transition metals is used to make stainless steel and zinccarbon cells?

Α.	Cr	Β.	Fe
C.	Mn	D.	Zn

Section B: Structural Question

Manganese is a transition metal. The formulae and the colours of some manganesecontaining species are shown below:

Formula	Mn ²⁺ (aq)	MnO ₂ (s)	MnO4 ²⁻ (aq)	MnO₄-(aq)
Colour	Pale pink	Black	Green	Purple

- (a) Based on the above information, state TWO properties of a transition metal shown by manganese.
- (b) Manganate(VI) ion is only stable in alkaline medium. Otherwise, it will disproportionate into manganese(IV) oxide and manganate(VII) ion. Write a chemical equation for this reaction. (Hints: Disproportionation = Self redox reaction)
- (c) Manganate(VII) ion is unstable when exposed to light. Suggest how to store potassium permanganate solution in the school laboratory.
- (d) In acidic and alkaline media, manganate(VII) ion is reduced to different species.
 - (i) Write the equations for the oxidations of iron(II) ion by potassium manganate(VII) in acidic and alkaline / neutral media respectively.
 (Hints: Add OH- in both sides of the ionic half equation in acidic media)
 - (ii) In which medium does manganate(VII) ion act as a stronger oxidizing agent?

The End

Suggested Answer

Section A

1.	А	5.	С
2.	С	6.	D
3.	D	7.	В
4.	В	8.	С

Section B

- (a) Many transition metals show variable oxidation states in their compounds. Many transition metal ions are coloured in aqueous solution.
- (b) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$
- (c) Store the solution in a brown bottle.
- (d) (i) Acidic:

 $5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \longrightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(I)$

Alkaline / Neutral: $MnO_4^{-}(aq) + 4H^{+}(aq) + 3e^{-} \longrightarrow MnO_2(s) + 2H_2O(I)$ Add 4 OH-(aq) on both sides, $MnO_4^{-}(aq) + 4H^{+}(aq) + 4OH^{-}(aq) + 3e^{-} \longrightarrow MnO_2(s) + 2H_2O(I) + 4OH^{-}(aq)$ $MnO_4^{-}(aq) + 4H_2O(I) + 3e^{-} \longrightarrow MnO_2(s) + 2H_2O(I) + 4OH^{-}(aq)$ $MnO_4^{-}(aq) + 2H_2O(I) + 3e^{-} \longrightarrow MnO_2(s) + 4OH^{-}(aq)$

 $\begin{array}{l} \operatorname{Fe}^{2+}(\operatorname{aq}) \longrightarrow \operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} & x \ 3 \\ \operatorname{MnO}_{4^{-}}(\operatorname{aq}) + 2\operatorname{H}_{2}\operatorname{O}(\operatorname{I}) + \operatorname{3e}^{-} \longrightarrow \operatorname{MnO}_{2}(\operatorname{s}) + 4\operatorname{OH}^{-}(\operatorname{aq}) \end{array}$

$3Fe^{2+}(aq) + MnO_4^{-}(aq) + 2H_2O(I) \longrightarrow 3Fe^{3+}(aq) + MnO_2(s) + 4OH^{-}(aq)$

(ii) Acidic medium

(For the reduction in acidic medium, the change in oxidation number of manganese is larger.)

The End