Quiz (Rate Law 1)

1. A reaction has the following rate equation:

$$
\text { rate }=k[A][B]^{3}[C]^{2}
$$

What is the overall order of the reaction?
A. 4
B. 5
C. 6
D. 7
2. Consider the following reaction:

$$
Q_{2}(\mathrm{~g})+R_{2}(\mathrm{~g}) \rightarrow 2 Q R(\mathrm{~g})
$$

The order of reaction with respect to Q_{2} is 1 and the overall order of reaction is 2. Which of the following is the rate equation for the reaction?
A. Rate $=k\left[Q_{2}(\mathrm{~g})\right][Q R(\mathrm{~g})]$
B. \quad Rate $=k\left[Q_{2}(g)\right]\left[R_{2}(g)\right]$
C. Rate $=k\left[Q_{2}(g)\right]$
D. Rate $=k\left[R_{2}(g)\right]^{2}$
3. Given that the unit of the rate of reaction is $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$. What is the unit of the rate constant, k, for the following rate equation?

Rate $=k[A][B][C]^{2}$
A. $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
B. $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
C. $\mathrm{mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$
D. $\mathrm{mol}^{-4} \mathrm{dm}^{12} \mathrm{~s}^{-1}$
4. A rate-concentration graph of the reaction is shown in the following diagram.
$A \rightarrow$ products

What is the order of reaction with respect to A?
A. Zeroth order
B. First order
C. Second order
D. Cannot be determined
5. Given that $[A]$ is the concentration of the reactant A at any particular time. Which of the following graphs would give a straight line?
(1) [A] against time for a zeroth order reaction
(2) [A] against time for a first order reaction
(3) Rate against $[A]^{2}$ for a second order reaction
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
6. If the initial rate of reaction increases by a factor of four when the concentration of a reactant is doubled, what is the order of reaction with respect to that reactant?
A. 0
B. 1
C. 2
D. 3

Suggested Answer

1.	C	3.	C	5.	B
2.	B	4.	B	6.	C

