Quiz (Rate Law 2)

1. Nitrogen monoxide reacts with hydrogen at 1150 °C . The equation of the reaction is as follows: $2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$

Experiment	Initial [NO(g)] (mol dm⁻³)	Initial [H₂(g)] (mol dm⁻³)	Initial rate (mol dm ⁻³ s ⁻¹)
1	0.010	0.010	0.006
2	0.020	0.030	0.144
3	0.010	0.020	0.012

The results of the series of experiments are shown below:

Write the rate equation for the reaction.

2. Consider the following reaction: $CO(g) + NO_2(g) \longrightarrow CO_2(g) + NO(g)$

A series of experiments was carried out to study the relationship between the initial concentration and the initial rate at 298 K. The results are shown below:

Experiment	Initial concentration of CO(g) (mol dm ⁻³)	Initial concentration of NO2(g) (mol dm ⁻³)	Initial rate (mol dm ⁻³ s ⁻¹)
1	0.1	0.2	0.025
2	0.2	0.2	0.050
3	0.1	0.4	0.050
4	0.4	0.2	0.100

Write the rate equation for the reaction.

3. The decomposition of nitrogen dioxide is a second order reaction. The equation of the reaction is as follows: $2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$

The initial rate of decomposition is 4.3×10^{-4} mol dm⁻³ s⁻¹ when the initial concentration of NO₂ is 0.57 mol dm⁻³. What is the initial rate of decomposition when the initial concentration of NO₂ is 1.14 mol dm⁻³?

4. The following are some information about a reaction at 298 K: $A + B + C \longrightarrow \text{products}$

Experiment	Initial [A] (mol dm⁻³)	Initial [B] (mol dm ⁻³)	Initial [C] (mol dm⁻³)	Initial rate (mol dm ⁻³ s ⁻¹)
1	0.05	0.02	0.03	0.3
2	0.10	0.02	0.03	0.6
3	0.05	0.06	0.03	0.9
4	0.05	0.06	0.06	3.6

Write the rate equation for the reaction.

Suggested Answer

1. Let the rate equation: Rate = $k [NO(g)]^{\times} [H_2(g)]^{\vee}$ For Expt 1: $0.006 = k (0.01)^{x} (0.01)^{y}$ --- (1) For Expt 2: $0.144 = k (0.02)^{x} (0.03)^{y}$ ---- (2) For Expt 3: $0.012 = k (0.01)^{\times} (0.02)^{\vee}$ --- (3) (3)/(1): $0.012 / 0.006 = (0.02 / 0.01)^{y}$ \Rightarrow y = 1 $(2)/(1): \quad 0.144 / 0.006 = (0.02 / 0.01)^{\times} (0.03 / 0.01)$ \Rightarrow x = 3 Sub x = 3 and y = 1 into (1) \Rightarrow k = 600000 Rate equation: Rate = $600000 [NO(g)]^3 [H_2(g)]$ 2. Let the rate equation: Rate = $k [CO(g)]^{x} [NO_{2}(g)]^{y}$ For Expt 1 and 2: [NO₂(g)] was kept constant, If [CO(g)] was doubled, initial rate was also doubled. \Rightarrow 1st order w.r.t. CO(g) \Rightarrow i.e. x = 1 For Expt 1 and 3 [CO(g)] was kept constant, If [NO₂(g)] was doubled, initial rate was also doubled. \Rightarrow 1st order w.r.t. NO₂(g) \Rightarrow i.e. y = 1 Sub x = 1 and y = 1 into (1) \Rightarrow k = 1.25 Rate equation: Rate = 1.25 [CO(g)] [NO₂(g)]

- 3. Rate = k [NO₂(g)]² 4.3 × 10⁻⁴ = k (0.57)² k = 1.323 x 10⁻³ Rate = 1.323 x 10⁻³ [NO₂(g)]² = 1.323 x 10⁻³ (1.14)²
 - $= 1.72 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$

4. Let the rate equation: Rate = $k [A]^{x} [B]^{y} [C]^{z}$

	 [B] and [C] was kept constant, [A] was doubled, initial rate was also doubled. 1st order w.r.t. A i.e. x = 1
· · · · · · · · · · · · · · · · · · ·	 [A] and [C] was kept constant, [B] was tripled, initial rate was also tripled. 1st order w.r.t. B i.e. y = 1
· · · · · · · · · · · · · · · · · · ·	 [A] and [B] was kept constant, [C] was doubled, initial rate was quadrupled. 2nd order w.r.t. C i.e. z = 1
Sub x = 1; y = 1 and	$z = 2 into (1) \implies k = 10^{6}/3$

Rate equation: Rate = $10^{6}/3$ [A] [B] [C]²

The End