Quiz (Rate Law 2)

1. Nitrogen monoxide reacts with hydrogen at $1150^{\circ} \mathrm{C}$. The equation of the reaction is as follows: $\quad 2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

The results of the series of experiments are shown below:

Experiment	Initial [NO(g)] $\left(\mathbf{m o l ~ d m}^{-3}\right)$	Initial $\left[\mathbf{H}_{\mathbf{2}}(\mathbf{g})\right]$ $\left(\mathbf{m o l ~ d m}^{-3}\right)$	Initial rate $\left(\mathbf{m o l ~ d m}^{\mathbf{- 3}} \mathbf{~ s}^{\mathbf{- 1}}\right)$
1	0.010	0.010	0.006
2	0.020	0.030	0.144
3	0.010	0.020	0.012

Write the rate equation for the reaction.
2. Consider the following reaction: $\quad \mathrm{CO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$

A series of experiments was carried out to study the relationship between the initial concentration and the initial rate at 298 K . The results are shown below:

Experiment	Initial concentration of $\mathbf{C O}(\mathbf{g})\left(\mathbf{m o l ~ d m}^{\mathbf{3}}\right)$	Initial concentration of $\mathbf{N O}_{\mathbf{2}}(\mathbf{g})\left(\mathbf{m o l ~ d m}^{\mathbf{3}}\right)$	Initial rate (mol $\left.\mathbf{d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}\right)$
1	0.1	0.2	0.025
2	0.2	0.2	0.050
3	0.1	0.4	0.050
4	0.4	0.2	0.100

Write the rate equation for the reaction.
3. The decomposition of nitrogen dioxide is a second order reaction. The equation of the reaction is as follows: $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

The initial rate of decomposition is $4.3 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ when the initial concentration of NO_{2} is $0.57 \mathrm{~mol} \mathrm{dm}^{-3}$. What is the initial rate of decomposition when the initial concentration of NO_{2} is $1.14 \mathrm{~mol} \mathrm{dm}^{-3}$?
4. The following are some information about a reaction at 298 K :
$A+B+C \longrightarrow$ products

Experiment	Initial [A] $\left(\mathbf{m o l ~ d m}^{\mathbf{3}}\right)$	Initial [B] (mol $\left.\mathbf{d m}^{-3}\right)$	Initial [C] $\left(\mathbf{m o l ~ d m}^{\mathbf{3}}\right)$	Initial rate $\left(\mathbf{m o l ~ d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}\right)$
1	0.05	0.02	0.03	0.3
2	0.10	0.02	0.03	0.6
3	0.05	0.06	0.03	0.9
4	0.05	0.06	0.06	3.6

Write the rate equation for the reaction.

Suggested Answer

1. Let the rate equation: \quad Rate $=k[N O(g)]^{x}\left[H_{2}(\mathrm{~g})\right]^{y}$

For Expt 1: $\quad 0.006=k(0.01)^{x}(0.01)^{y} \quad---(1)$
For Expt 2: $\quad 0.144=k(0.02)^{x}(0.03)^{y} \quad---(2)$
For Expt 3: $\quad 0.012=k(0.01)^{x}(0.02)^{y} \quad---(3)$
$(3) /(1): \quad 0.012 / 0.006=(0.02 / 0.01)^{y}$

$$
\Rightarrow \quad y=1
$$

$(2) /(1): \quad 0.144 / 0.006=(0.02 / 0.01)^{\times}(0.03 / 0.01)$
$\Rightarrow \quad x=3$

Sub $x=3$ and $y=1$ into (1) $\Rightarrow k=600000$
Rate equation: Rate $=600000[\mathrm{NO}(\mathrm{g})]^{3}\left[\mathrm{H}_{2}(\mathrm{~g})\right]$
2. Let the rate equation: \quad Rate $=k[C O(g)]^{x}\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{y}$

For Expt 1 and 2: $\left[\mathrm{NO}_{2}(\mathrm{~g})\right]$ was kept constant,
If [CO(g)] was doubled, initial rate was also doubled.
$\Rightarrow \quad 1^{\text {st }}$ order w.r.t. CO(g)
\Rightarrow i.e. $x=1$
For Expt 1 and 3 [CO(g)] was kept constant,
If $\left[\mathrm{NO}_{2}(\mathrm{~g})\right]$ was doubled, initial rate was also doubled.
$\Rightarrow \quad 1^{\text {st }}$ order w.r.t. $\mathrm{NO}_{2}(\mathrm{~g})$
\Rightarrow i.e. $y=1$

Sub $x=1$ and $y=1$ into (1) $\Rightarrow k=1.25$
Rate equation: Rate $=1.25[\mathrm{CO}(\mathrm{g})]\left[\mathrm{NO}_{2}(\mathrm{~g})\right]$
3. Rate $=\mathrm{k}\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}$
$4.3 \times 10^{-4}=k(0.57)^{2}$
$\mathrm{k}=1.323 \times 10^{-3}$
Rate $=1.323 \times 10^{-3}\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}$
$=1.323 \times 10^{-3}(1.14)^{2}$
$=1.72 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
4. Let the rate equation: \quad Rate $=k[A]^{x}[B]^{y}[C]^{z}$

$$
\begin{aligned}
& \text { For Expt } 1 \text { and 2: [B] and [C] was kept constant, } \\
& \text { If [A] was doubled, initial rate was also doubled. } \\
& \Rightarrow \quad 1^{\text {st }} \text { order w.r.t. } A \\
& \Rightarrow \text { i.e. } x=1 \\
& \text { For Expt } 1 \text { and } 3 \text { [A] and [C] was kept constant, } \\
& \text { If [B] was tripled, initial rate was also tripled. } \\
& \Rightarrow \quad 1 \text { st order w.r.t. B } \\
& \Rightarrow \text { i.e. } y=1 \\
& \text { For Expt } 3 \text { and } 4 \text { [A] and [B] was kept constant, } \\
& \text { If [C] was doubled, initial rate was quadrupled. } \\
& \Rightarrow 2^{\text {nd }} \text { order w.r.t. C } \\
& \Rightarrow \text { i.e. } \mathrm{z}=1 \\
& \text { Sub } x=1 ; y=1 \text { and } z=2 \text { into (1) } \Rightarrow k=10^{6} / 3 \\
& \text { Rate equation: Rate }=106 / 3[A][B][C]^{2}
\end{aligned}
$$

