Quiz (Arrhenius Equation)

1. Determine graphically the activation energy for the decomposition of phosphine (PH₃) on a quartz surface from the following data:

Rate constant (s ⁻¹)	1.995 × 10 ⁻⁸	5.012 × 10 ⁻⁸	3.162 × 10-7	1.000 × 10-6
Temperature (K)	635	690	800	870

(Given: R = 8.31 J K - 1 mol - 1)

Decomposition of phosphine: $2PH_3(g) \longrightarrow 2P(s) + 3H_2(g)$

2. The rate constants of a reaction at different temperatures were found by experiments and are shown below:

Temperature (K)	200	300	400	500	600	700	800
Rate constant (s ⁻¹)	0.236	0.301	0.340	0.366	0.385	0.399	0.409

What is the activation energy of this reaction? (Given: R = 8.31 J K-1 mol-1)

3. Consider the following reaction: $X \longrightarrow Y$

At 300°C, the rate constant for the reaction is 2.41×10^{-10} s⁻¹. At 400°C, the rate constant is 1.16×10^{-6} s⁻¹. Determine the activation energy, E_{α} of this reaction.

4. Using the following data, determine the activation energy for the decomposition of HI. (Given: $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)

Temperature (K)	Rate constant (mol dm ⁻³ s ⁻¹)
673	8.38 × 10-4
773	7.65 × 10 ⁻²

5. Consider a reaction with $E_a = 52 \text{ kJ mol}^{-1}$. Comment on the effect of increasing the reaction temperature from 298 K to 308 K on the rate of reaction.

Suggested Answer

1. Arrhenius equation: $\log k = \text{constant} - E_{\alpha} / 2.3 \text{ RT}$

By plotting a graph of log k against 1/T, the slope of the line obtained should be equal to $-E_{\alpha}/2.3 R$.

By using the points (0.00119, -6.2) and (0.00141, -7.1),

the slope = [-7.1 - (-6.2)] / (0.00141 - 0.00119) = -4091

 $\therefore -E_{\alpha}/2.3 R = -4091$

 $E_a = 4091 \times 2.3 \times 8.31$ = 78 191 J mol⁻¹ = 78.2 kJ mol⁻¹ 2. Arrhenius equation states that log k = constant – E_a / 2.3 RT By plotting a graph of log k again 1/T, the slope of the line obtained should be equal to – E_a / 2.3 R

By using the points (0.00333, -0.521) and (0.005, -0.627),

the slope = [-0.627 - (-0.521)] / (0.005 - 0.00333) = -63.47

- E_a / 2.3 R = -63.47

E_a = 63.47 x 2.3 x 8.31 = 1213 J mol⁻¹ = 1.213 kJ mol⁻¹

3. By substituting values of k_1 , k_2 , T_1 and T_2 into the Arrhenius equation, E_a can be solved.

 $k_1 = 2.41 \times 10^{-10}$ $T_1 = 300 + 273 \text{ K} = 573 \text{ K}$ $k_2 = 1.16 \times 10^{-6}$ $T_2 = 400 + 273 \text{ K} = 673 \text{ K}$

 $\log k_1 - \log k_2 = E_a / 2.3 R (1 / T_2 - 1 / T_1)$

 $\log 2.41 \times 10^{-10} - \log 1.16 \times 10^{-6} = E_a / 2.3 \times 8.31 (1/673 - 1/573)$

Solving for $E_{\alpha} = 271 \text{ kJ mol}^{-1}$

4. By substituting values of k_1 , k_2 , T_1 and T_2 into the Arrhenius equation, E_a can be solved.

 $\log k_1 - \log k_2 = E_a / 2.3 R (1 / T_2 - 1 / T_1)$

 $\log 8.38 \times 10^{-4} - \log 7.65 \times 10^{-2} = E_a / 2.3 \times 8.31 (1/773 - 1/673)$

Solving for $E_a = 195 \text{ kJ mol}^{-1}$

5. According to the Arrhenius equation,

At 298 K,	$k_{298} = A \exp(-52 \times 10^3 / 8.31 \times 298)$ = A (7.59 x 10 ⁻¹⁰)
A† 308 K,	$k_{308} = A \exp(-52 \times 10^3 / 8.31 \times 308)$ = A (15.02 x 10 ⁻¹⁰)
$k_{308} / k_{298} = A$	A (15.02 x 10 ⁻¹⁰) / A (7.59 x 10 ⁻¹⁰) = $1.98 \approx 2$

. . . .

 $k_{308} = 2 \ge k_{298}$

The reaction rate nearly doubles when the temperature increases by 10 K. Small temperature changes lead to an obvious influence on the rates of reactions.