Quiz (Non-Octet Structure)

1. The boron atom in boron trifluoride is 'electron deficient'. Boron trifluoride has a high tendency to get two more electrons in order to attain the octet structure. When boron trifluoride and ammonia react, a dative covalent bond forms between them. A white solid with the formula $\mathrm{NH}_{3} \mathrm{BF}_{3}$ is produced.
(a) Explain why ammonia can form a dative covalent bond with boron trifluoride.
(b) Using electron diagrams, show how NH_{3} and BF_{3} react to form $\mathrm{NH}_{3} \mathrm{BF}_{3}$.
2. For the following simple molecular substances:
$\mathrm{BeCl}_{2}, \mathrm{NCl}_{3}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{IF}_{3}$
(a) Draw an electron diagram for each of them.
(b) Hence, deduce which of them does/do not follow the octet rule.

Suggested Answer

1. (a) The nitrogen atom in ammonia molecule has a lone pair of electrons. It contributes the lone pair of electrons to share with the boron atom. As a result, a dative covalent bond forms.
(b)

2. (a)

$\mathrm{Cl}_{2} \mathrm{O} \quad \cdots$

IF_{3}

(b) BeCl_{2} and IF_{3}. The central beryllium atom in BeCl_{2} has only four outermost shell electrons. The central iodine atom in IF_{3} has $\mathbf{1 0}$ outermost shell electrons.
