Quiz (Shape of Molecules)

- 1. The shapes of H_2S , NF_3 and SiH_4 are found to be similar to that of H_2O , NH_3 and CH_4 respectively.
 - (a) Draw the electron diagrams of H₂S, NF₃ and SiH₄ respectively, showing electrons in the outermost shells only.
 - (b) State the shapes of H₂S, NF₃ and SiH₄ molecules respectively and draw the three-dimensional structures of each of these molecules.
 - (c) Explain why each of the following pairs of molecules has similar shape:
 - (i) H_2S and H_2O ;
 - (ii) NF₃ and NH₃;
 - (iii) SiH4 and CH4.
- 2. Predicting shapes of molecules with central atom obeying octet rule and with multiple bonds.

For each of the following molecules:

- (i) carbon dioxide (CO_2)
- (ii) methanal (HCHO)
- (a) Draw the electron diagram of the molecule, showing electrons in the outermost shells only.
- (b) Predict the shape and draw the three-dimensional structure of the molecule.
- 3. CCl₄ is a carbon compound. The shape of a CCl₄ molecule is similar to that of a CH₄ molecule.
 - (a) Draw an electron diagram of CCl₄, showing electrons in the outermost shells only. (Use '•' for electrons of the central atom and '×' for electrons of other atoms.)
 - (b) State the shape of a CCl₄ molecule.
 - (c) Explain why the shape of a CCl_4 molecule is similar to that of a CH_4 molecule.
 - (d) Draw the three-dimensional structure of a CCl₄ molecule.
- 4. Consider a sulphur trioxide molecule, SO₃.
 - (a) Draw an electron diagram for the molecule, showing electrons in the outermost shells only.
 - (b) Predict and draw the three-dimensional structure of the molecule.

- 5. For each of the following molecules,
 - (a) HCN
 - (b) PCI3
 - (c) SCI₆
 - (i) Draw an electron diagram of the molecule, showing electrons in the outermost shells only.
 - (ii) Predict the shape and draw the three-dimensional structure of the molecule.

Suggested Answer

- 1. (a)
- $H \stackrel{\bullet\bullet}{\circ} \stackrel{\bullet\bullet}{\circ} \stackrel{\bullet\bullet}{\circ} H \qquad \stackrel{\star\star}{\circ} \stackrel{\bullet\bullet}{F} \stackrel{\bullet\bullet}{\circ} \stackrel{\star\star}{\circ} \stackrel{\star\star}{F} \stackrel{\bullet\bullet}{\circ} \stackrel{\star\star}{\circ} \stackrel{\star\star}{H} \stackrel{\bullet\bullet}{\circ} \stackrel{\star\bullet}{Si} \stackrel{\star}{\circ} H \\ \stackrel{\star}{\circ} \stackrel{\bullet}{F} \stackrel{\star}{\circ} \stackrel{\star}{K} \stackrel{\star}{F} \stackrel{\star}{\circ} \stackrel{\star}{H} \stackrel{\star}{\circ} \stackrel{\bullet}{Si} \stackrel{\star}{\circ} H \\ \stackrel{\star}{\bullet} \stackrel{\bullet}{H} \stackrel{\star}{\bullet} \stackrel{\bullet}{Si} \stackrel{\star}{\circ} H \\ \stackrel{\star}{\bullet} \stackrel{\bullet}{H} \stackrel{\bullet}{H} \stackrel{\star}{\bullet} \stackrel{\bullet}{H} \stackrel{$
- (b) H_2S is V-shaped, NF₃ is trigonal pyramidal and SiH₄ is tetrahedral in shape.

- (c) (i) Both the sulphur atom in H₂S and the oxygen atom in H₂O have two lone pairs and two bond pairs around them. The repulsion between these electron pairs causes both H₂S and H₂O to adopt a V-shape.
 - (ii) Both the nitrogen atoms in NF3 and NH3 have one lone pair and three bond pairs around them. The repulsion between these electron pairs causes both NF3 and NH3 to adopt a trigonal pyramidal shape.
 - (iii) Both the silicon atom in SiH₄ and the carbon atom in CH₄ have four bond pairs around them. The repulsion between these electron pairs causes both SiH₄ and CH₄ to adopt a tetrahedral shape.
- 2. (a)
- (ii) Linear

O

a double bond is treated as 'one' electron pair when predicting the shape of a molecule

this central carbon atom is regarded as having two electron pairs in its outermost shell

 a double bond is treated as 'one' electron pair when predicting the shape of a molecule

this central carbon atom is regarded as having three electron pairs in its outermost shell

3. (a)

(b)

- (b) Tetrahedral
- (c) Both the carbon atoms in CCl₄ and in CH₄ have four bond pairs around them. The repulsion between these electron pairs causes both CCl₄ and CH₄ to adopt a tetrahedral shape.

(d)

4. (a)

(b) Trigonal planar

a double bond is treated as 'one' electron pair when predicting the shape of a molecule

(b)

the central sulphur atom has 12 electrons in its outermost shell

5. (a)

(ii) Linear; $H - C \equiv N$

(ii) Trigonal pyramidal;

(ii) Octahedral;

