Use of $E=m c \Delta T$

1. 0.377 g of magnesium was burnt to heat up 800 g of water. The temperature of water rose by $2.3^{\circ} \mathrm{C}$. Calculate the heat energy released by magnesium.
2. A spirit burner containing $20 \mathrm{~cm}^{3}$ methanol is used to heat up a beaker of $250 \mathrm{~cm}^{3} \mathrm{NaCl}(\mathrm{aq})$ from $15.5^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$. Calculate the heat energy released by methanol.
(Specific heat capacity $=4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$; density of water $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$)
