Quiz (Oxidation and Reduction of Aldehyde and Ketone)

1. Explain whether acidified potassium dichromate solution can be used to distinguish the following pair of compounds:

2. E is an acyclic carbon compound with a molecular formula of $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$. It can be converted to F and then G as shown below:

The following table gives us more information about compounds E and F.

Compound	Additional information
E	$-\quad$ It exist as a pair of cis-trans isomers. $-\quad$ There is no observable change when it is added to acidified potassium dichromate solution.
F	$-\quad$ It has one chiral carbon atom.

(a) Deduce the structural formulae of E and F.
(b) Draw the structures of the cis-trans isomers of E.
(c) Draw the three-dimensional structures of the stereoisomers of F.
3. Write the structural formulae of the products of the following reactions.
(a)

(b)

(c)

Suggested Answer

1. Yes, it can.

Acidified potassium dichromate solution can oxidize compound A (butan-2-ol) to butanone. The orange dichromate ions are reduced to green chromium(III) ions.

However, acidified potassium dichromate solution cannot oxidize compound B (butanone) and there is no observable change when they are mixed.
2. (a) As E can exist as a pair of cis-trans isomers, it should contain a carboncarbon double bond and the double bond should not be at the terminal position of the molecule.

In addition, as E can be reduced by NaBH_{4}, it may be an aldehyde or ketone. However, as E cannot be oxidized by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-(\mathrm{aq}) / \mathrm{H}^{+}(\mathrm{aq}) \text {, it should }}$ be a ketone, but not an aldehyde.
F should be a secondary alcohol as it is produced by the reduction of E (a ketone). As it can undergo hydrogenation, it should contain a carboncarbon double bond.

Furthermore, as it is a chiral compound, the -OH group should be attached to the fourth carbon atom of the molecule so that a chiral carbon exists in the molecule. Therefore, the structures of E and F are:
E:

(b) The structure of cis-trans isomers of E are:

cis isomer and

trans isomer
(c) The three-dimensional structures of the stereoisomers of F are:

and

 and

3. (a)

(b)

(c)

