Determining ΔH_n^{\varnothing}

400.0 cm³ of 0.600 mol dm⁻³ HNO₃(aq) are mixed with 400.0 cm³ of 0.300 mol dm⁻³ Ba(OH)₂(aq) in a polystyrene cup.

The initial temperature of both solutions is the same at 18.9 °C, and the final temperature of the mixed solution is 22.5 °C.

What is the enthalpy change of neutralization between $HNO_3(aq)$ and $Ba(OH)_2(aq)$?

(Density of mixed solution = 1.00 g cm^{-3} ;

specific heat capacity of mixed solution = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$)

Suggested Answer

- 1. Equation: $HNO_3(aq) + \frac{1}{2}Ba(OH)_2(aq) \longrightarrow \frac{1}{2}Ba(NO_3)_2(aq) + H_2O(I)$
- 2. number of mole of $HNO_3 = 0.6 \times 0.4 = 0.24$ number of mole of $Ba(OH)_2 = 0.3 \times 0.4 = 0.12$ number of mole of water = 0.24
- 3. Volume of resulting solution = $400 + 400 = 800 \text{ cm}^3$ Mass of resulting solution = $800 \times 1.00 = 800 \text{ g}$
- 4. ΔT = 22.5 − 18.9 = 3.6 °C
- 5. Calculation:

Energy released, $E = m c \Delta T$ = (800) (4.18) (3.6) = 12038 J = 12.04 kJ

Standard Enthalpy Change of Neutralization, ΔH_n^{\varnothing}

= - E / mole of water = - 12.04 / 0.24 = - 50.16 kJ mol⁻¹