Determining $\Delta \mathrm{H}_{\mathrm{c}}{ }^{\varnothing}$

A student used a simple calorimeter to determine the enthalpy change of combustion of ethanal.
Given the following data, Mass of ethanal burnt $=1.65 \mathrm{~g}$
Mass of water in the calorimeter $=250.0 \mathrm{~g}$
Mass of calorimeter $=15.0 \mathrm{~g}$
s.h.c. of calorimeter $=0.40 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
s.h.c. of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$

Initial temperature of water $=26.2^{\circ} \mathrm{C}$
Final temperature of water $=69.0^{\circ} \mathrm{C}$
Calculate the enthalpy change of combustion of ethanal if
a) The heat capacity of the calorimeter is negligible.
b) The heat capacity of the calorimeter is not negligible.
(RAM: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$;)

Suggested Answer

1. Equation: $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{I})+2 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. Mass of water $=250.0 \mathrm{~g}$
3. $\Delta \mathrm{T}=69.0-26.2=42.8^{\circ} \mathrm{C}$
4. Molar mass of ethanal $=44.0 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of mole of ethanal used $=1.65$ / 44

$$
=0.0375
$$

5. Calculation (a): s.h.c. of calorimeter is negligible.

Energy absorbed by water $=\mathrm{mc} \Delta \mathrm{T}$

$$
\begin{aligned}
& =(250.0)(4.18)(42.8) \\
& =44726 \mathrm{~J} \\
& =44.73 \mathrm{~kJ}
\end{aligned}
$$

Standard Enthalpy Change of Combustion, $\Delta \mathrm{H}_{\mathrm{c}}{ }^{\varnothing}$
= - E / mole of ethanal
$=-44.73 / 0.0375$
$=-1193 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Calculation (b): s.h.c. of calorimeter is not negligible.
Energy absorbed by water $=\mathrm{m} c \Delta \mathrm{~T}$
$=(250.0)(4.18)(42.8)+(15.0)(0.40)(42.8)$
$=44983 \mathrm{~J}$
$=44.98 \mathrm{~kJ}$
Standard Enthalpy Change of Combustion, $\Delta \mathrm{H}_{c}{ }^{\varnothing}$
= - E / mole of ethanal
$=-44.89 / 0.0375$
$=-1199.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=-1200 \mathrm{~kJ} \mathrm{~mol}^{-1}$

