Application of Hess's Law

1. Given the following data:

Substance	ΔH_c^{\varnothing} (kJ mol ⁻¹)
C(graphite)	-394
H ₂ (g)	-286
CH ₄ (g)	-890

- (a) Write all thermochemical equations.
- (b) Draw an enthalpy change cycle and hence calculate the standard enthalpy change of formation of CH₄(g)?
- 2. Given that:

$$\Delta H_f^{\varnothing}[C_8H_{18}(I)] = -278.5 \text{ kJ mol}^{-1}$$

 $\Delta H_f^{\varnothing}[CO_2(g)] = -393.5 \text{ kJ mol}^{-1}$
 $\Delta H_f^{\varnothing}[H_2O(I)] = -285.8 \text{ kJ mol}^{-1}$

- (a) Write all thermochemical equations.
- (b) Draw an enthalpy change cycle and hence calculate the standard enthalpy change of combustion of C₈H₁₈(I)?
- 3. Given that the standard enthalpy changes of formation of $P_4O_{10}(s)$, $H_2O(l)$ and $H_3PO_4(l)$ are -2984 kJ mol⁻¹, -285.8 kJ mol⁻¹ and -1272 kJ mol⁻¹ respectively. Calculate the standard enthalpy change of the reaction between phosphorus pentoxide and water.

$$P_4O_{10}(s) + 6H_2O(l) \longrightarrow 4H_3PO_4(l)$$