Quiz (Effect of Concentration on Chemical Equilibrium)

1. Ammonia dissolves readily in water to form an alkaline solution according to the following equation:

 $NH_3(g) + H_2O(I) \leftrightarrows NH_4^+(aq) + OH^-(aq)$

Referring to the above equation, explain the following:

- (a) The addition of an excess of solid sodium hydroxide to aqueous ammonia would liberate ammonia.
- (b) The addition of an excess of powdered lead(II) nitrate to aqueous ammonia would lower its pH value.
- The following equation represents the equilibrium system of bromine water: Br₂(aq) + 2H₂O(I) ≒ H₃O⁺(aq) + Br⁻(aq) + HOBr(aq)

About 2 cm³ of orange-coloured bromine water are placed in each of two testtubes A and B, and the following tests are carried out:

Test-tube A	Test-tube B
Add a few drops of NaOH(aq) and	Add a few drops of AgNO ₃ (aq) and
shake; then, add concentrated HCI	shake; then allow to stand in sunlight.
dropwise, with shaking, until the	
solution is acidic.	

- (a) Describe and explain the observations in test-tube A in terms of chemical equilibrium.
- (b) What would be observed in test-tube B? Explain your observations.

Suggested Answer

- 1. (a) The addition of NaOH(s) increases the [OH-(aq)] when it is dissolved in the solution, and the equilibrium position will be shifted to the left.
 - (b) Pb²⁺(aq) from dissolved lead(II) nitrate would remove the OH-(aq) to form a precipitate of Pb(OH)₂(s) and lower the pH value.
 Pb²⁺(aq) + 2OH-(aq) → Pb(OH)₂(s)
 [OH-(aq)] is decreased, therefore, lower pH values.
- 2. (a) The orange colour becomes lighter / turns to pale yellow / decolourized; because $H_3O^+(aq)$ reacts with NaOH(aq) and the equilibrium position shifts to the right / product side.

The colour of the solution becomes orange again / darker in colour; because the addition of H_3O^+ shifts the equilibrium position to the left.

(b)

Observation	Explanation
Pale yellow precipitate is formed	$Ag+ + Br- \longrightarrow AgBr(s) /$
Solution becomes lighter in colour	formation of silver bromide
Precipitate turns dark / violet upon	Decomposition of AgBr / formation
standing in sunlight	of finely divided silver /
	photochemical reaction