Quiz (Equilibrium Constant)

Consider the following reaction: $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ K_c

- (a) Write the expression of equilibrium constant (K_c) of the reaction.
- (b) What is the unit of K_c for the equilibrium system?
- (c) At 298 K, 1 atm, an equilibrium mixture was found to have the following composition: $[NH_3(g)] = 0.50 \text{ mol dm}^{-3}$ $[O_2(g)] = 0.60 \text{ mol dm}^{-3}$ $[NO(g)] = 1.20 \text{ mol dm}^{-3}$ $[H_2O(g)] = 0.30 \text{ mol dm}^{-3}$

Calculate the equilibrium constant, K_c , for the reaction.

(d) What is the K_c at 298 K, 2 atm?

Suggested Answer

- (a) $K_c = [NO(g)]^4 [H_2O(g)]^6 / [NH_3(g)]^4 [O_2(g)]^5$
- (b) The unit of $K_c = (mol dm^{-3})^4 (mol dm^{-3})^6 / (mol dm^{-3})^4 (mol dm^{-3})^5 = mol dm^{-3}$
- (c) $K_c = (1.20)^4 (0.30)^6 / (0.50)^4 (0.60)^5$ = 0.3110 mol dm⁻³
- (d) No change in K_c .