## Quiz (Equilibrium Constant)

Consider the following reaction:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}
$$

(a) Write the expression of equilibrium constant $\left(K_{c}\right)$ of the reaction.
(b) What is the unit of $K_{c}$ for the equilibrium system?
(c) At $298 \mathrm{~K}, 1 \mathrm{~atm}$, an equilibrium mixture was found to have the following composition:
$\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=0.50 \mathrm{~mol} \mathrm{dm}^{-3} \quad\left[\mathrm{O}_{2}(\mathrm{~g})\right]=0.60 \mathrm{~mol} \mathrm{dm}^{-3}$
$[\mathrm{NO}(\mathrm{g})]=1.20 \mathrm{~mol} \mathrm{dm}^{-3} \quad\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=0.30 \mathrm{~mol} \mathrm{dm}^{-3}$
Calculate the equilibrium constant, $\mathrm{K}_{\mathrm{c}}$, for the reaction.
(d) What is the $K_{c}$ at $298 \mathrm{~K}, 2$ atm?

## Suggested Answer

(a) $\mathrm{K}_{\mathrm{c}}=[\mathrm{NO}(\mathrm{g})]^{4}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]^{6} /\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{4}\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{5}$
(b) The unit of $\mathrm{K}_{\mathrm{c}}=\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{6} /\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{5}$ $=\mathrm{mol} \mathrm{dm}^{-3}$
(c) $\mathrm{K}_{\mathrm{c}}=(1.20)^{4}(0.30)^{6} /(0.50)^{4}(0.60)^{5}$

$$
=0.3110 \mathrm{~mol} \mathrm{dm}^{-3}
$$

(d) No change in K .

