Quiz (Equilibrium Constant II)

1. Consider the following equilibrium reaction:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

If the value of the equilibrium constant for the reaction is $0.105 \text{ mol}^{-2} \text{ dm}^6 \text{ at } 50^\circ\text{C}$, what is the value of the equilibrium constant at the same temperature for the reaction: $\frac{1}{2}N_2(g) + \frac{1}{2}H_2(g) \rightleftharpoons \text{NH}_3(g)$?

2. At 460°C, the equilibrium constant, K_c, for the following reaction is 48. $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

In an experiment, 2.0 g of $H_2(g)$ was mixed with 508 g of $I_2(g)$ in a 5.0 dm³ container and the mixture was allowed to reach equilibrium.

- (a) Calculate the initial number of moles of $H_2(g)$ and $I_2(g)$ respectively. (Relative atomic masses: H = 1.0, I = 126.9)
- (b) Calculate the equilibrium concentrations of $H_2(g)$, $I_2(g)$ and HI(g) in the mixture.
- (c) If 0.50 mol of HI(g) is injected into the container and the mixture was allowed to reach equilibrium again. Calculate the new equilibrium concentrations of H₂(g), I₂(g) and HI(g) in the mixture.
- 3. Consider the following equilibrium reaction:

Fe³⁺(aq) + SCN⁻(aq) \rightleftharpoons FeSCN²⁺(aq) $\Delta H < 0$ yellow colourless red

A student mixed 50.0 cm³ of 0.020 M Fe(NO₃)₃(aq) and 50.0 cm³ of 0.020 M KSCN(aq) in a conical flask at room temperature, and equilibrium was established.

- (a) The equilibrium concentration of Fe³⁺(aq) was 0.0026 M. Calculate the equilibrium constant for the reaction at room temperature.
- (b) A few drops of silver nitrate solution are added to the equilibrium mixture.
 - (i) Given that AgSCN is insoluble in water, suggest the colour change of the mixture. Explain your answer.
 - (ii) In the graph below, sketch the change of the concentration of FeSCN²⁺(aq) until a new equilibrium is established.

Suggested Answer

1. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $K_c = [NH_3(g)]^2 / [N_2(g)] [H_2(g)]^3$ $= 0.105 \text{ mol}^{-2} \text{ dm}^6$

$$\begin{split} {}^{1}\!\!\!{}^{2}N_{2}(g) &+ 1{}^{1}\!\!\!{}^{2}H_{2}(g) \rightleftharpoons NH_{3}(g) \\ K_{c}' &= [NH_{3}(g)] / [N_{2}(g)]^{\frac{1}{2}} [H_{2}(g)]^{\frac{1}{2}} \\ &= K_{c}^{\frac{1}{2}} \\ &= (0.105)^{\frac{1}{2}} \\ &= 0.324 \text{ mol}^{-1} \text{ dm}^{3} \end{split}$$

- (a) Number of moles of H₂(g) = 2.0 / (1.0 x 2) = 1.0 mol
 Number of moles of I₂(g) = 508 / (126.9 x 2) = 2.0 mol
 - (b) Let x mol dm^{-3} be the change in concentration of $H_2(g)$.

Concentration (mol dm ⁻³)	H ₂ (g) ·	+ l ₂ (g) =	≑ 2HI(g)
Initial	1.0 / 5.0 = 0.2	2.0 / 5.0 = 0.4	0
Change	-X	-X	+2x
Equilibrium	0.2 – x	0.4 – x	2x

 $K_c = [HI(g)]^2 / [H_2(g)][I_2(g)]$ $48 = (2x)^2 / (0.2 - x)(0.4 - x)$ $48(0.08 - 0.6x + x^2) = 4x^2$ x = 0.186 or 0.468 (rejected)

 $[H_2(g)]_{eqm} = (0.2 - 0.186) \text{ mol } dm^{-3} = 0.014 \text{ mol } dm^{-3}$ $[I_2(g)]_{eqm} = (0.4 - 0.186) \text{ mol } dm^{-3} = 0.214 \text{ mol } dm^{-3}$ $[HI(g)]_{eqm} = 2 \times 0.186 \text{ mol } dm^{-3} = 0.372 \text{ mol } dm^{-3}$

(c) Let y mol dm^{-3} be the change in concentration of $H_2(g)$.

Concentration (mol dm ⁻³)	H ₂ (g) ·	+ l ₂ (g)	⇒ 2HI(g)
Initial	0.014	0.214	0.372 + 0.50 / 5.0 = 0.472
Change	+y	+y	-2y
Equilibrium	0.014 + y	0.214 + y	0.472 – 2y

 $48 = (0.472 - 2y)^2 / (0.014 + y) (0.214 + y)$ $44 y^2 + 12.832 y - 0.078976 = 0$ y = 0.060 or - 0.2977 (rejected)

 $[H_2(g)]_{eqm} = (0.014 + 0.006) \text{ mol } dm^{-3} = 0.020 \text{ mol } dm^{-3}$ $[I_2(g)]_{eqm} = (0.214 + 0.006) \text{ mol } dm^{-3} = 0.220 \text{ mol } dm^{-3}$ $[HI(g)]_{eqm} = (0.472 - 2(0.006)) \text{ mol } dm^{-3} = 0.460 \text{ mol } dm^{-3}$ 3. <u>(a)</u>

Concentration (mol dm ⁻³)	Fe ³⁺ (aq) +	- SCN⁻(aq) ≓	FeSCN ²⁺ (aq)
Initial	0.020 x (50/50+50) = 0.010	0.020 x (50/50+50) = 0.010	0
Change	0.010 - 0.0026 = -0.0074	-0.0074	+0.0074
Equilibrium	0.0026	0.0026	0.0074

 $K_c = [FeSCN^{2+}(aq)] / [Fe^{3+}(aq)][SCN^{-}(aq)]$

= (0.0074) / (0.0026) (0.0026)

= 1095 mol⁻¹ dm³

- (b) (i) The colour of the mixture becomes paler. The removal of SCN⁻(aq) by precipitation with Ag⁺(aq) shifts the equilibrium position to the left.
 - (ii)

