Quiz (Equilibrium Constant II)

1. Consider the following equilibrium reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
If the value of the equilibrium constant for the reaction is $0.105 \mathrm{~mol}^{-2} \mathrm{dm}^{6}$ at $50^{\circ} \mathrm{C}$, what is the value of the equilibrium constant at the same temperature for the reaction: $\quad 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})$?
2. At $460^{\circ} \mathrm{C}$, the equilibrium constant, K_{c}, for the following reaction is 48 .
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
In an experiment, 2.0 g of $\mathrm{H}_{2}(\mathrm{~g})$ was mixed with $508 \mathrm{~g}_{\mathrm{g}}$ of $\mathrm{I}_{2}(\mathrm{~g})$ in a $5.0 \mathrm{dm}^{3}$ container and the mixture was allowed to reach equilibrium.
(a) Calculate the initial number of moles of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ respectively.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{I}=126.9$)
(b) Calculate the equilibrium concentrations of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{I}_{2}(\mathrm{~g})$ and $\mathrm{HI}(\mathrm{g})$ in the mixture.
(c) If 0.50 mol of $\mathrm{HI}(\mathrm{g})$ is injected into the container and the mixture was allowed to reach equilibrium again.
Calculate the new equilibrium concentrations of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{I}_{2}(\mathrm{~g})$ and $\mathrm{HI}(\mathrm{g})$ in the mixture.
3. Consider the following equilibrium reaction:
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{FeSCN}^{2+}(\mathrm{aq}) \quad \Delta H<0$
yellow colourless red
A student mixed $50.0 \mathrm{~cm}^{3}$ of $0.020 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$ and $50.0 \mathrm{~cm}^{3}$ of 0.020 M KSCN(aq) in a conical flask at room temperature, and equilibrium was established.
(a) The equilibrium concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ was 0.0026 M . Calculate the equilibrium constant for the reaction at room temperature.
(b) A few drops of silver nitrate solution are added to the equilibrium mixture.
(i) Given that AgSCN is insoluble in water, suggest the colour change of the mixture. Explain your answer.
(ii) In the graph below, sketch the change of the concentration of $\mathrm{FeSCN}^{2+}(\mathrm{aq})$ until a new equilibrium is established.

Suggested Answer

1. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{2} /\left[\mathrm{N}_{2}(\mathrm{~g})\right]\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{3} \\
& =0.105 \mathrm{~mol}^{-2} \mathrm{dm}^{6}
\end{aligned} \\
& \begin{aligned}
& 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+11 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g}) \\
& \mathrm{K}_{\mathrm{c}}{ }^{\prime}=\left[\mathrm{NH}_{3}(\mathrm{~g})\right] /\left[\mathrm{N}_{2}(\mathrm{~g})\right]^{1 / 2}\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{1 / 2} \\
&=\mathrm{K}^{1 / 2} \\
&=(0.105)^{1 / 2} \\
&=0.324 \mathrm{~mol}^{-1} \mathrm{dm}^{3}
\end{aligned}
\end{aligned}
$$

2. (a) Number of moles of $\mathrm{H}_{2}(\mathrm{~g})=2.0 /(1.0 \times 2)=1.0 \mathrm{~mol}$

Number of moles of $\mathrm{I}_{2}(\mathrm{~g})=508 /(126.9 \times 2)=2.0 \mathrm{~mol}$
(b) Let $x \mathrm{~mol} \mathrm{dm}^{-3}$ be the change in concentration of $\mathrm{H}_{2}(\mathrm{~g})$.

Concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$		$\rightleftharpoons \mathrm{HI}(\mathrm{g})$
Initial	$1.0 / 5.0=0.2$	$2.0 / 5.0=0.4$	0
Change	$-x$	$-x$	$+2 x$
Equilibrium	$0.2-x$	$0.4-x$	$2 x$

$K_{c}=[\mathrm{HI}(\mathrm{g})]^{2} /\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]$
$48=(2 x)^{2} /(0.2-x)(0.4-x)$
$48\left(0.08-0.6 x+x^{2}\right)=4 x^{2}$
$x=0.186$ or 0.468 (rejected)
$\left[\mathrm{H}_{2}(\mathrm{~g})\right]_{\text {eqm }}=(0.2-0.186) \mathrm{mol} \mathrm{dm}^{-3}=0.014 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[l_{2}(\mathrm{~g})\right]_{\text {eqm }}=(0.4-0.186) \mathrm{mol} \mathrm{dm}^{-3}=0.214 \mathrm{~mol} \mathrm{dm}^{-3}$
$[\mathrm{HI}(\mathrm{g})]_{\text {eqm }}=2 \times 0.186 \mathrm{~mol} \mathrm{dm}^{-3}=0.372 \mathrm{~mol} \mathrm{dm}^{-3}$
(c) Let $y \mathrm{~mol} \mathrm{dm}^{-3}$ be the change in concentration of $\mathrm{H}_{2}(\mathrm{~g})$.

Concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$		$2 \mathrm{HI}(\mathrm{g})$
Initial	0.014	0.214	$0.372+0.50 / 5.0$ $=0.472$
Change	$+y$	$+y$	$-2 y$
Equilibrium	$0.014+y$	$0.214+y$	$0.472-2 y$

$$
\begin{aligned}
& 48=(0.472-2 y)^{2} /(0.014+y)(0.214+y) \\
& 44 y^{2}+12.832 y-0.078976=0 \\
& y=0.060 \text { or }-0.2977(\text { rejected }) \\
& {\left[\mathrm{H}_{2}(\mathrm{~g})\right]_{\text {eqm }}=(0.014+0.006) \mathrm{mol} \mathrm{dm}^{-3}=0.020 \mathrm{~mol} \mathrm{dm}^{-3}} \\
& {\left[\mathrm{I}_{2}(\mathrm{~g})\right]_{\text {eqm }}=(0.214+0.006) \mathrm{mol} \mathrm{dm}^{-3}=0.220 \mathrm{~mol} \mathrm{dm}^{-3}} \\
& {[\mathrm{HI}(\mathrm{~g})]_{\text {eqm }}=(0.472-2(0.006)) \mathrm{mol} \mathrm{dm}^{-3}=0.460 \mathrm{~mol} \mathrm{dm}^{-3}}
\end{aligned}
$$

3. (a)

Concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$\mathrm{Fe}^{3+}(\mathrm{aq})$		
Initial	$0.020 \times(50 / 50+50)$ $=0.010$	$0.020 \times(50 / 50+50)$ $=0.010$	$\mathrm{SeSCN}^{2+}(\mathrm{aq})$
Change	$0.010-0.0026$ $=-0.0074$	-0.0074	0
Equilibrium	0.0026	0.0026	+0.0074

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\left[\mathrm{FeSCN}^{2+}(\mathrm{aq})\right] /\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]\left[\mathrm{SCN}^{-}(\mathrm{aq})\right] \\
& =(0.0074) /(0.0026)(0.0026) \\
& =1095 \mathrm{~mol}^{-1} \mathrm{dm}^{3}
\end{aligned}
$$

(b) (i) The colour of the mixture becomes paler. The removal of $\mathrm{SCN}^{-}(\mathrm{aq})$ by precipitation with $\mathrm{Ag}^{+}(\mathrm{aq})$ shifts the equilibrium position to the left.
(ii)

