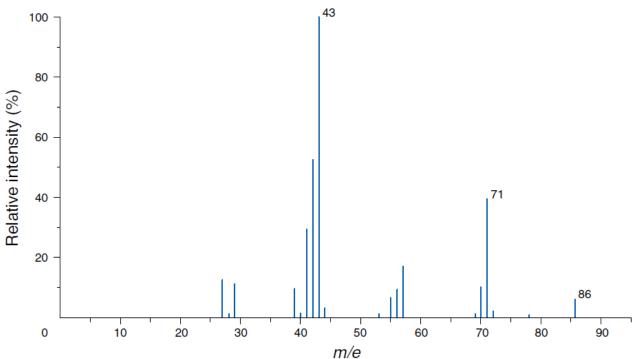
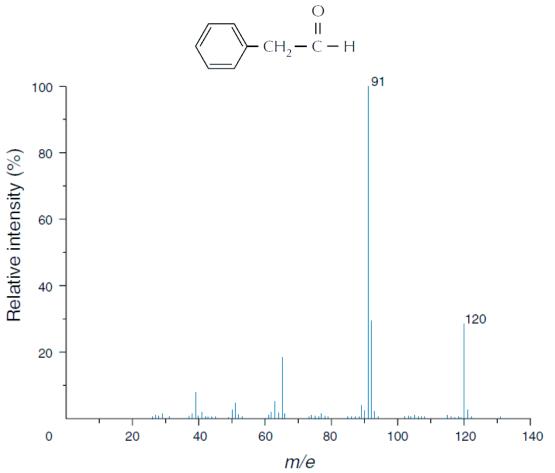
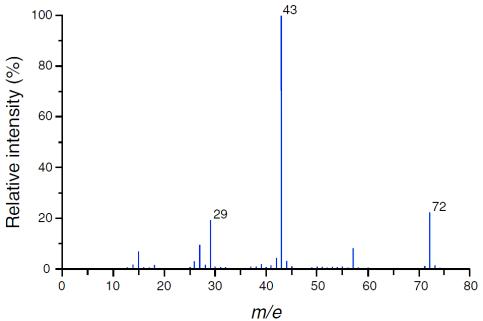

Quiz (Mass Spectrometry)


1. A mass spectrum of chloromethane is shown below.

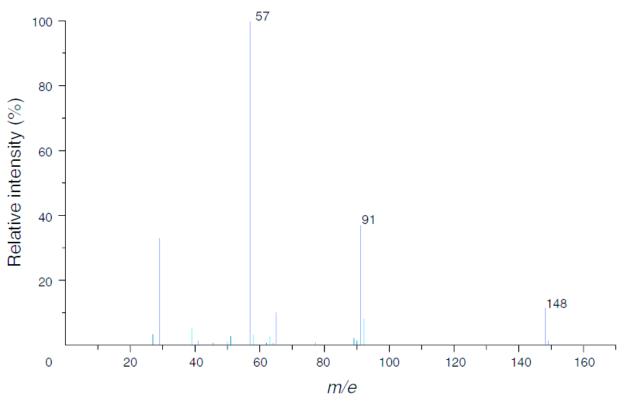
- (a) Suggest one chemical species corresponding to each of the peaks at m/e = 52, m/e = 50 and m/e = 15 in the mass spectrum.
- (b) It is found that the peak heights of the peaks at m/e = 52 and m/e = 50 are in the ratio of 1 : 3. What does this information indicate about the relative abundance of the two isotopes ³⁷Cl and ³⁵Cl?
- (c) By using the information given in the mass spectrum, calculate the relative molecular mass of CH₃Cl.
- 2. The mass spectrum of bromomethane is shown below.


- (a) What are the ions that account for the peaks at m/e = 15, m/e = 94 and m/e = 96 respectively in the mass spectrum?
- (b) (i) What is the ratio of the heights of the peaks at m/e = 94 and m/e = 96?(ii) What does this information indicate?
- (c) By using the information given in the mass spectrum, calculate the relative molecular mass of CH₃Br.
- 3. (a) Identify the molecular ion peak in the mass spectrum of 2-methylpentane.
 - (b) Hence, or otherwise, determine the relative molecular mass of 2-methylpentane.
 - (c) Show the fragmentation patterns that account for the peaks at m/e = 71 and m/e = 43 in the mass spectrum.

4. The following shows the mass spectra of two isomers: propanal and propanone. Identify the spectrum of each isomer and explain briefly.

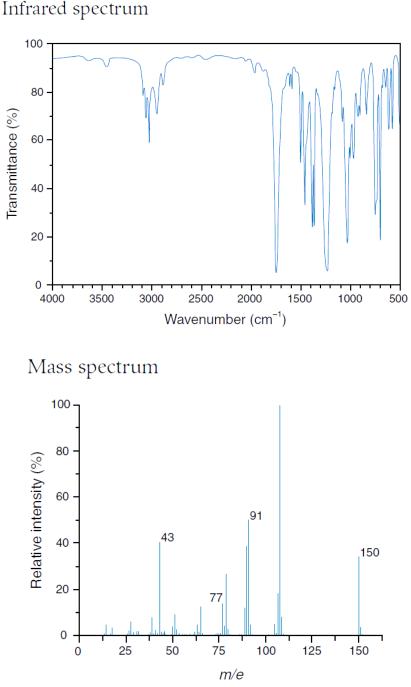


5. The structural formula of a carbon compound and its mass spectrum are shown below:


What ions do the peaks at m/e = 120 and 91 represent? Explain your answer briefly.

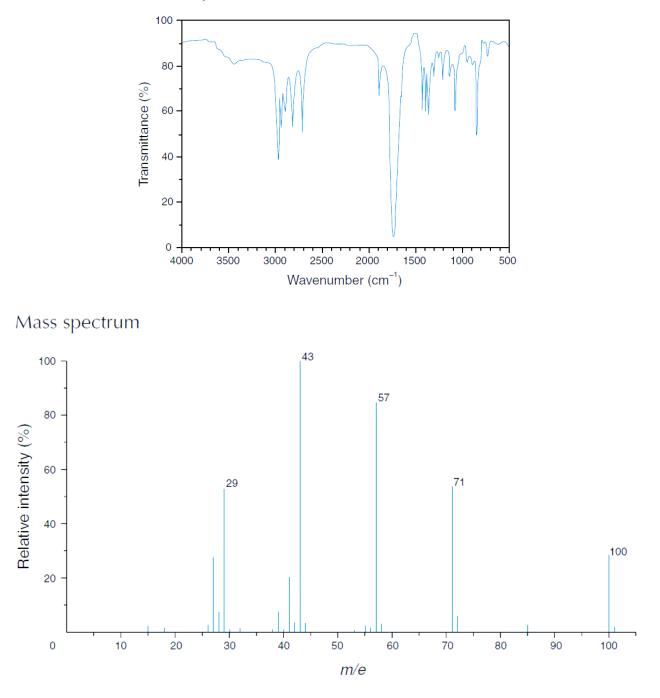
6. An organic compound Y has the following percentage composition by mass: 66.7% carbon, 11.1% hydrogen and 22.2% oxygen. Its mass spectrum is shown below:

It is known that compound Y reacts with 2,4-dinitrophenylhydrazine to form an orange precipitate but does not form a silver mirror with Tollens' reagent. (Relative atomic masses: H = 1.0, C = 12.0, O = 16.0)

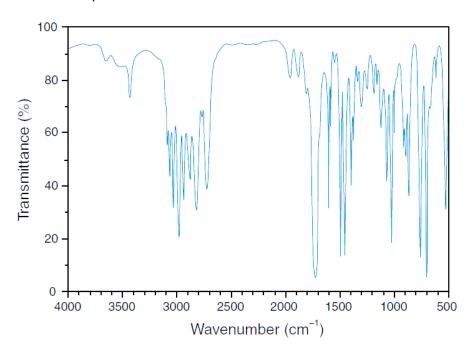

- (a) Deduce the empirical formula of compound Y.
- (b) Deduce the molecular formula of compound Y using the information from the mass spectrum.
- (c) Suggest one chemical species corresponding to each of the peaks at m/e = 43 and m/e = 29.
- (d) Deduce the possible structure of compound Y.
- A student converts compound A (C₁₀H₁₄O) to compound B (C₁₀H₁₂O) by heating compound A with acidified potassium dichromate solution. The mass spectrum of compound B is shown below:

It is known that compound B reacts with 2,4-dinitrophenylhydrazine to form an orange precipitate.

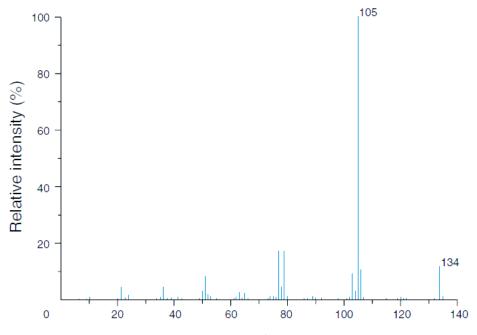
- (a) What information could be obtained from the chemical test on compound B?
- (b) Suggest one chemical species corresponding to each of the peaks at m/e = 57 and m/e = 91.
- (c) Deduce the possible structure of compound B.


 Compound A has a molecular formula of C₉H₁₀O₂ and is found naturally in flowers like jasmine. It can also be made by reacting compound B (C₇H₈O) with compound C (C₂H₄O₂) in laboratories. The infrared spectrum and mass spectrum of compound A are shown below:

- (a) From the infrared spectrum, suggest ONE functional group present in compound A.
- (b) Suggest one chemical species corresponding to each of the peaks at m/e = 150, 91 and 43 respectively in the mass spectrum.
- (c) Deduce the possible structure of compound A.
- (d) Hence, deduce the possible structures of compounds B and C.


9. An unknown compound X has the following composition by mass: 72.0% carbon, 12.0% hydrogen and 16.0% oxygen.
(Relative atomic masses: H = 1.0; C = 12.0; O = 16.0)

The infrared and mass spectra of compound X are shown below. Infrared spectrum



- (a) Determine the empirical formula of compound X.
- (b) By analysing the mass spectrum, determine the relative molecular mass of compound *X*.
- (c) By analysing both the mass and infrared spectra, determine the possible structure for compound X.

- 10. Compound Z is an aromatic compound with molecular formula of C₉H₁₀O. Two chemical tests are performed on compound Z and the results are as follows:
 - Test (1): Compound Z turns acidified potassium dichromate solution from orange to green.
 - Test (2): Compound Z forms a silver mirror inside the test tube when Tollens' reagent is added.
 - The infrared and mass spectra of compound Z are shown below: Infrared spectrum

- (a) (i) With reference to the result of test (1), suggest the functional group(s) that compound Z may contain.
 - (ii) With reference to the result of test (2), suggest the functional group(s) that compound Z may contain.
- (b) From the infrared spectrum, suggest ONE functional group present in compound Z.
- (c) Suggest one chemical species corresponding to each of the peaks at m/e = 134 and 105 respectively in the mass spectrum.
- (d) Draw a possible structure of compound Z.

Suggested Answer

- 1. (a) The peaks at m/e = 52 and m/e = 50 are due to the molecular ions CH₃³⁷Cl⁺ and CH₃³⁵Cl⁺ respectively. The peak at m/e = 15 is due to the ion CH₃⁺.
 - (b) The relative abundance of ${}^{37}Cl$ and ${}^{35}Cl$ is in the ratio of 1 : 3.
 - (c) Relative molecular mass of CH₃Cl
 - = relative molecular mass of $CH_3^{37}CI \times percentage$ abundance + relative molecular mass of $CH_3^{35}CI \times percentage$ abundance
 - = 52 × 25% + 50 × 75%
 - = 50.5
- 2. (a) The peaks at m/e = 15, m/e = 94 and m/e = 96 are due to the ions $CH_{3^{+}}$, $CH_{3^{79}}Br^{+}$ and $CH_{3^{81}}Br^{+}$ respectively.
 - (b) (i) 1:1
 (ii) The relative abundance of ⁷⁹Br and ⁸¹Br is in the ratio of 1:1.
 - (c) Relative molecular mass of CH₃Br = $94 \times 50\% + 96 \times 50\%$
 - = 95
- 3. (a) The molecular ion peak is at m/e = 86.
 - (b) The relative molecular mass of 2-methylpentane is 86.
 - (c) The fragmentation patterns that produce the peaks at m/e = 71 and 43 respectively are shown below.
 - The peak at m/e = 71 is due to the cation $(CH_3 CH_2 CH_2 CH_2 CH_3)$ formed from the molecular ion by stripping off a $-CH_3$ group CH_3 $(CH_3 - CH_2 - CH_2 - CH_2 - CH_3 + CH_3)$

• The peak at m/e = 43 is due to the cation $(CH_3 - CH^+)$ formed from the molecular ion by stripping off a $CH_3 - CH_2 - CH_2 - GH_2$ group $(CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3^+)$.

CH₃

 CH_3

4. Interpretation of prominent peaks in the mass spectrum P:

m/e	lon
58	CH ₃ CH ₂ CHO ⁺
57	CH ₃ CH ₂ CO ⁺
29	CH ₃ CH ₂ ⁺ OR CHO ⁺

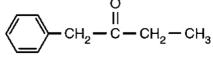
The absence of peak at m/e = 43 indicates that no CH_3CO^+ ion forms during fragmentation. Hence, mass spectrum P belongs to propanal.

Interpretation of prominent peaks in the mass spectrum Q:

m/e	lon
58	CH ₃ COCH ₃ ⁺
43	CH ₃ CO ⁺

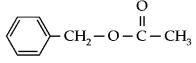
The presence of peak at m/e = 43 corresponds to the CH_3CO^+ ion. Hence, mass spectrum Q belongs to propanone.

- 5. The peak at m/e = 120 corresponds to the molecular ion $C_6H_5CH_2CHO^+$. The peak at m/e = 91 is due to the cation ($C_6H_5CH_2^+$) formed from the molecular ion by stripping off a —CHO group ($C_6H_5CH_2^-$ —**CHO**⁺).
- 6. (a) Let the mass of compound Y be 100 g, Thus, the mass of carbon in the compound = 66.7 g the mass of hydrogen in the compound = 11.1 g the mass of oxygen in the compound = 22.2 g


	Carbon	Hydrogen	Oxygen
Mass (g)	66.7	11.1	22.2
Number of moles (mol	66.7 / 12.0	11.1 / 1.0	22.2 / 16.0
Number of moles (mol)	= 5.56	= 11.1	= 1.39
Mole ratio	5.56 / 1.39	11.1 / 1.39	1.39 / 1.39
	= 4	= 8	= 1

- \therefore the empirical formula of compound Y is C₄H₈O.
- (b) From the mass spectrum, the highest *m*/e value occurs at 72. Therefore, the relative molecular mass of compound Y is 72. Let the molecular formula of the compound be (C₄H₈O)_n.

Relative molecular mass of $(C_4H_8O)_n = 72$ n × (12.0 × 4 + 1.0 × 8 + 16.0) = 72 \Rightarrow n = 1


:. the molecular formula of compound Y is C_4H_8O .

- (c) Compound Y reacts with 2,4-dinitrophenylhydrazine. It contains carbonyl group C=O.
 m/e = 43 suggests the presence of CH₃CO⁺.
 m/e = 29 suggests the presence of CH₃CH₂⁺.
- (d) Compound Y has a molecular formula of C₄H₈O and has a carbonyl group. It should not be an aldehyde because it does not form a silver mirror with Tollens' reagent. Therefore, compound Y is a ketone. Its possible structure is:
- 7. (a) Compound B should contain a carbonyl group.
 - (b) The peaks at m/e = 57 and 91 correspond to the ion CH₃CH₂CO⁺ and C₆H₅CH₂⁺ respectively.
 - (c) As compound B contains a carbonyl group, it should be an aldehyde or a ketone. Compound B has 10 carbon atoms and it produces fragment ions of CH₃CH₂CO⁺ and C₆H₅CH₂⁺ during fragmentation. Therefore, compound B is a ketone. Its possible structure is:

- 8. (a) The absorption peak at 1700 cm⁻¹ corresponds to the presence of C=O bond. Compound A contains C=O group.
 - (b) m/e = 150 is due to the molecular ion C₉H₁₀O₂⁺. m/e = 91 suggests the presence of C₆H₅CH₂⁺. m/e = 43 suggests the presence of CH₃CO⁺.
 - (c) The peak at m/e = 77 in the mass spectrum shows that compound A consists of a benzene ring (m/e = 77 for $C_6H_5^+$). Besides, the absence of broad absorption peak at about 2500–3300 cm–1 in the IR spectrum indicates that the compound does not contain –OH group of carboxylic acid. Hence, compound A is not a carboxylic acid. It is likely to be an ester.

Referring to the fragmentation patterns found in the mass spectrum, compound A has the possible structure:

У– СН₂ОН

(d) Compound A is an ester made by the reaction between an alcohol and a carboxylic acid. Therefore, compounds B and C have the possible structures:

Compound B:

Compound C: H O
I II
$$H-C-C-OH$$

I
H

 9. (a) Let the mass of compound X be 100 g, Thus, the mass of carbon in the compound = 72.0 g the mass of hydrogen in the compound = 12.0 g the mass of oxygen in the compound = 16.0 g

	Carbon	Hydrogen	Oxygen
Mass (g)	72.0	12.0	16.0
Number of moles (mol)	72.0 / 12.0 = 6	12.0 / 1.0 = 12	16.0 / 16.0 = 1
Mole ratio	6	12	1

- \therefore the empirical formula of compound X is C₆H₁₂O.
- (b) From the mass spectrum, the peak at m/e = 100 corresponds to the molecular ion. Hence, the relative molecular mass of compound X is 100.
- (c) Let the molecular formula of compound X be $(C_6H_{12}O)_n$.

 $n \times (12.0 \times 6 + 1.0 \times 12 + 16.0) = 100$

- \Rightarrow n = 1
- :. the molecular formula of compound X is $C_6H_{12}O$.

From the IR spectrum, there is a strong absorption peak at 1750 cm⁻¹. This indicates the presence of the C=O bond. The compound may be hexanal, hexan-2-one or hexan-3-one.

Interpretation of prominent peaks in the mass spectrum:

m/e	lon
100	CH ₃ CH ₂ CH ₂ COCH ₂ CH ₃ +
71	$CH_3CH_2CH_2CO^+$
57	CH ₃ CH ₂ CO ⁺

- \therefore Compound X is hexan-3-one.
- 10. (a) (i) The compound should contain a hydroxyl group or an aldehyde group.
 - (ii) The compound should contain an aldehyde group.
 - (b) The strong absorption peak at 1720 cm⁻¹ corresponds to the presence of C=O bond. Compound Z contains a carbonyl group.
 - (c) m/e = 134 is due to the molecular ion $C_6H_5CH_2CH_2CHO^+$. m/e = 105 is due to the fragment ion $C_6H_5CH_2CH_2^+$.
 - (d)