Quiz (Mass Spectrometry)

1. A mass spectrum of chloromethane is shown below.

(a) Suggest one chemical species corresponding to each of the peaks at m / e $=52, m / e=50$ and $m / e=15$ in the mass spectrum.
(b) It is found that the peak heights of the peaks at $m / e=52$ and $m / e=50$ are in the ratio of $1: 3$. What does this information indicate about the relative abundance of the two isotopes ${ }^{37} \mathrm{Cl}$ and ${ }^{35} \mathrm{Cl}$?
(c) By using the information given in the mass spectrum, calculate the relative molecular mass of $\mathrm{CH}_{3} \mathrm{Cl}$.
2. The mass spectrum of bromomethane is shown below.

(a) What are the ions that account for the peaks at $m / e=15, m / e=94$ and $m / e=96$ respectively in the mass spectrum?
(b) (i) What is the ratio of the heights of the peaks at $m / e=94$ and $m / e=96$?
(ii) What does this information indicate?
(c) By using the information given in the mass spectrum, calculate the relative molecular mass of $\mathrm{CH}_{3} \mathrm{Br}$.
3. (a) Identify the molecular ion peak in the mass spectrum of 2-methylpentane.
(b) Hence, or otherwise, determine the relative molecular mass of 2-methylpentane.
(c) Show the fragmentation patterns that account for the peaks at $\mathrm{m} / \mathrm{e}=71$ and $m / e=43$ in the mass spectrum.

4. The following shows the mass spectra of two isomers: propanal and propanone. Identify the spectrum of each isomer and explain briefly.

Mass spectrum P

Mass spectrum Q
5. The structural formula of a carbon compound and its mass spectrum are shown below:

What ions do the peaks at $m / e=120$ and 91 represent? Explain your answer briefly.
6. An organic compound Y has the following percentage composition by mass: 66.7% carbon, 11.1% hydrogen and 22.2% oxygen. Its mass spectrum is shown below:

It is known that compound Y reacts with 2,4-dinitrophenylhydrazine to form an orange precipitate but does not form a silver mirror with Tollens' reagent.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
(a) Deduce the empirical formula of compound Y.
(b) Deduce the molecular formula of compound Y using the information from the mass spectrum.
(c) Suggest one chemical species corresponding to each of the peaks at m/e $=43$ and $m / e=29$.
(d) Deduce the possible structure of compound Y.
7. A student converts compound $\mathrm{A}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}\right)$ to compound $\mathrm{B}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}\right)$ by heating compound A with acidified potassium dichromate solution.
The mass spectrum of compound B is shown below:

It is known that compound B reacts with 2,4-dinitrophenylhydrazine to form an orange precipitate.
(a) What information could be obtained from the chemical test on compound B ?
(b) Suggest one chemical species corresponding to each of the peaks at m / e $=57$ and $m / e=91$.
(c) Deduce the possible structure of compound B.
8. Compound A has a molecular formula of $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ and is found naturally in flowers like jasmine. It can also be made by reacting compound $B\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\right)$ with compound $\mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ in laboratories. The infrared spectrum and mass spectrum of compound A are shown below:

Infrared spectrum

Mass spectrum

m/e
(a) From the infrared spectrum, suggest ONE functional group present in compound A.
(b) Suggest one chemical species corresponding to each of the peaks at m / e $=150,91$ and 43 respectively in the mass spectrum.
(c) Deduce the possible structure of compound A.
(d) Hence, deduce the possible structures of compounds B and C.
9. An unknown compound X has the following composition by mass: 72.0% carbon, 12.0% hydrogen and 16.0% oxygen.
(Relative atomic masses: $\mathrm{H}=1.0 ; \mathrm{C}=12.0 ; \mathrm{O}=16.0$)
The infrared and mass spectra of compound X are shown below.
Infrared spectrum

Mass spectrum

(a) Determine the empirical formula of compound X.
(b) By analysing the mass spectrum, determine the relative molecular mass of compound X.
(c) By analysing both the mass and infrared spectra, determine the possible structure for compound X.
10. Compound Z is an aromatic compound with molecular formula of $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$. Two chemical tests are performed on compound Z and the results are as follows:

Test (1): Compound Z turns acidified potassium dichromate solution from orange to green.

Test (2): Compound Z forms a silver mirror inside the test tube when Tollens' reagent is added.

The infrared and mass spectra of compound Z are shown below:
Infrared spectrum

Mass spectrum

(a) (i) With reference to the result of test (1), suggest the functional group(s) that compound Z may contain.
(ii) With reference to the result of test (2), suggest the functional group(s) that compound Z may contain.
(b) From the infrared spectrum, suggest ONE functional group present in compound Z.
(c) Suggest one chemical species corresponding to each of the peaks at m/e $=134$ and 105 respectively in the mass spectrum.
(d) Draw a possible structure of compound Z.

Suggested Answer

1. (a) The peaks at $m / e=52$ and $m / e=50$ are due to the molecular ions $\mathrm{CH}_{3}{ }^{37} \mathrm{Cl}^{+}$ and $\mathrm{CH}_{3}{ }^{35} \mathrm{Cl}^{+}$respectively.
The peak at $\mathrm{m} / \mathrm{e}=15$ is due to the ion $\mathrm{CH}_{3}{ }^{+}$.
(b) The relative abundance of ${ }^{37} \mathrm{Cl}$ and ${ }^{35} \mathrm{Cl}$ is in the ratio of $1: 3$.
(c) Relative molecular mass of $\mathrm{CH}_{3} \mathrm{Cl}$
$=$ relative molecular mass of $\mathrm{CH}_{3}{ }^{37} \mathrm{Cl} \times$ percentage abundance + relative molecular mass of $\mathrm{CH}_{3}{ }^{35} \mathrm{Cl} \times$ percentage abundance
$=52 \times 25 \%+50 \times 75 \%$
$=50.5$
2. (a) The peaks at $m / e=15, m / e=94$ and $m / e=96$ are due to the ions $\mathrm{CH}_{3}{ }^{+}$, $\mathrm{CH}_{3}{ }^{79} \mathrm{Br}^{+}$and $\mathrm{CH}_{3}{ }^{81} \mathrm{Br}^{+}$respectively.
(b) (i) $1: 1$
(ii) The relative abundance of ${ }^{79} \mathrm{Br}$ and ${ }^{81 B r}$ is in the ratio of $1: 1$.
(c) Relative molecular mass of $\mathrm{CH}_{3} \mathrm{Br}$
$=94 \times 50 \%+96 \times 50 \%$
$=95$
3. (a) The molecular ion peak is at $m / e=86$.
(b) The relative molecular mass of 2-methylpentane is 86 .
(c) The fragmentation patterns that produce the peaks at $m / e=71$ and 43 respectively are shown below.

- The peak at $m / e=71$ is due to the cation
 from the molecular ion by stripping off a $-\mathrm{CH}_{3}$ group

- The peak at $m / e=43$ is due to the cation
 formed from the molecular ion by stripping off a $\stackrel{\mathrm{CH}}{3}$
$\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}\right.$
$\left.\mathrm{C}-\mathrm{CH}_{3}^{+}\right)$.

4. Interpretation of prominent peaks in the mass spectrum P :

m / e	Ion
58	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}^{+}$
57	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}$
29	$\mathrm{CH}_{3} \mathrm{CH}_{2}^{+} \mathrm{OR} \mathrm{CHO}^{+}$

The absence of peak at $\mathrm{m} / \mathrm{e}=43$ indicates that no $\mathrm{CH}_{3} \mathrm{CO}^{+}$ion forms during fragmentation. Hence, mass spectrum P belongs to propanal.

Interpretation of prominent peaks in the mass spectrum Q :

m/e	Ion
58	$\mathrm{CH}_{3} \mathrm{COCH}_{3}{ }^{+}$
43	$\mathrm{CH}_{3} \mathrm{CO}^{+}$

The presence of peak at $\mathrm{m} / \mathrm{e}=43$ corresponds to the $\mathrm{CH}_{3} \mathrm{CO}^{+}$ion. Hence, mass spectrum Q belongs to propanone.
5. The peak at $m / e=120$ corresponds to the molecular ion $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}^{+}$. The peak at $\mathrm{m} / \mathrm{e}=91$ is due to the cation $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}\right)$formed from the molecular ion by stripping off a-CHO group ($\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{CHO}^{+}\right)$.
6. (a) Let the mass of compound Y be 100 g ,

Thus, the mass of carbon in the compound $=66.7 \mathrm{~g}$
the mass of hydrogen in the compound $=11.1 \mathrm{~g}$
the mass of oxygen in the compound $=22.2 \mathrm{~g}$

	Carbon	Hydrogen	Oxygen
Mass (g)	66.7	11.1	22.2
Number of moles (mol)	$66.7 / 12.0$ $=5.56$	$11.1 / 1.0$	$22.2 / 16.0$
	$5.56 / 1.39$ Mole ratio	$11.1 / 1.39$	$1.39 / 1.39$
	$=4$	$=8$	$=1$

$\therefore \quad$ the empirical formula of compound Y is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$.
(b) From the mass spectrum, the highest m /e value occurs at 72. Therefore, the relative molecular mass of compound Y is 72 . Let the molecular formula of the compound be $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{n}$.

Relative molecular mass of $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{\mathrm{n}}=72$
$n \times(12.0 \times 4+1.0 \times 8+16.0)=72$
$\Rightarrow \mathrm{n}=1$
$\therefore \quad$ the molecular formula of compound Y is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$.
(c) Compound Y reacts with 2,4-dinitrophenylhydrazine. It contains carbonyl group $\mathrm{C}=\mathrm{O}$.
$m / e=43$ suggests the presence of $\mathrm{CH}_{3} \mathrm{CO}^{+}$.
$m / e=29$ suggests the presence of $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$.
(d) Compound Y has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ and has a carbonyl group. It should not be an aldehyde because it does not form a silver mirror with Tollens' reagent. Therefore, compound Y is a ketone. Its possible structure is:
7. (a) Compound B should contain a carbonyl group.
(b) The peaks at $m / e=57$ and 91 correspond to the ion $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}$and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$respectively.
(c) As compound B contains a carbonyl group, it should be an aldehyde or a ketone. Compound B has 10 carbon atoms and it produces fragment ions of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}$and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$during fragmentation. Therefore, compound B is a ketone. Its possible structure is:

8. (a) The absorption peak at $1700 \mathrm{~cm}^{-1}$ corresponds to the presence of $\mathrm{C}=\mathrm{O}$ bond. Compound A contains $\mathrm{C}=\mathrm{O}$ group.
(b) $m / e=150$ is due to the molecular ion $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{+}$.
$m / e=91$ suggests the presence of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$.
$m / e=43$ suggests the presence of $\mathrm{CH}_{3} \mathrm{CO}^{+}$.
(c) The peak at $m / e=77$ in the mass spectrum shows that compound A consists of a benzene ring ($\mathrm{m} / \mathrm{e}=77$ for $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$).
Besides, the absence of broad absorption peak at about $2500-3300 \mathrm{~cm}-1$ in the $I \mathbb{R}$ spectrum indicates that the compound does not contain -OH group of carboxylic acid. Hence, compound A is not a carboxylic acid. It is likely to be an ester.
Referring to the fragmentation patterns found in the mass spectrum, compound A has the possible structure:

(d) Compound A is an ester made by the reaction between an alcohol and a carboxylic acid. Therefore, compounds B and C have the possible structures:
Compound B:
 Compound C :

9. (a) Let the mass of compound X be 100 g ,

Thus, the mass of carbon in the compound $=72.0 \mathrm{~g}$
the mass of hydrogen in the compound $=12.0 \mathrm{~g}$
the mass of oxygen in the compound $=16.0 \mathrm{~g}$

	Carbon	Hydrogen	Oxygen
Mass (g)	72.0	12.0	16.0
Number of moles (mol)	$72.0 / 12.0$ $=6$	$12.0 / 1.0$ $=12$	$16.0 / 16.0$ $=1$
Mole ratio	6	12	1

$\therefore \quad$ the empirical formula of compound X is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$.
(b) From the mass spectrum, the peak at $m / e=100$ corresponds to the molecular ion. Hence, the relative molecular mass of compound X is 100 .
(c) Let the molecular formula of compound X be $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}\right)_{\mathrm{n}}$.
$n \times(12.0 \times 6+1.0 \times 12+16.0)=100$
$\Rightarrow n=1$
$\therefore \quad$ the molecular formula of compound X is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$.
From the \mathbb{R} spectrum, there is a strong absorption peak at $1750 \mathrm{~cm}^{-1}$. This indicates the presence of the $\mathrm{C}=\mathrm{O}$ bond. The compound may be hexanal, hexan-2-one or hexan-3-one.

Interpretation of prominent peaks in the mass spectrum:

m/e	Ion
100	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}{ }^{+}$
71	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}^{+}$
57	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}$

\therefore Compound X is hexan-3-one.
10. (a) (i) The compound should contain a hydroxyl group or an aldehyde group.
(ii) The compound should contain an aldehyde group.
(b) The strong absorption peak at $1720 \mathrm{~cm}^{-1}$ corresponds to the presence of $\mathrm{C}=\mathrm{O}$ bond. Compound Z contains a carbonyl group.
(c) $\mathrm{m} / \mathrm{e}=134$ is due to the molecular ion $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}^{+}$. $\mathrm{m} / \mathrm{e}=105$ is due to the fragment ion $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$.
(d)

