Quiz (Contribution of Analytical Chemistry)

Section A: Multiple-choice

- 1. Hydrolysis of proteins gives a mixture of amino acids. What is the preliminary test for these amino acids?
 - A. Colorimetry
 - C. Mass spectrometry

- B. Infrared spectroscopy
- D. Thin-layer chromatography
- Some white wine contains sulphur dioxide. Which of the following methods should be used to find the amount of sulphur dioxide in a wine sample?
 A. Infrared spectroscopy
 B. Mass spectrometry
 - A. Infrared spectroscopyC. Volumetric analysis
- D. Thin-layer chromatography
- 3. Images of fingerprint can be seen clearly through
 - A. gas chromatography-mass spectrometry.
 - B. infrared spectroscopy.
 - C. iodine sublimation.
 - D. thin-layer chromatography.
- 4. Which of the following methods is commonly used to measure the dioxin level in air?
 - A. Column chromatography
 - B. Gas chromatography-mass spectrometry
 - C. Infrared spectroscopy
 - D. Magnetic resonance imaging
- 5. The IR spectrum of the breath of a drunken driver is shown below:

Which of the following absorbance peaks corresponds to the hydroxyl group?

- A. 1000 cm⁻¹
- C. 3000 cm⁻¹

B. 1600 cm⁻¹
 D. 3400 cm⁻¹

Questions 6 to 8 refer to ketamine, which has the following structure:

- 6. Which of the following reagents does NOT react with ketamine?
 - (1) Acidified potassium dichromate solution
 - (2) Tollens' reagent
 - (3) 2,4-dinitrophenylhydrazine
 - A. (1) and (2) only

B. (1) and (3) only

C. (2) and (3) only

- D. (1), (2) and (3)
- 7. Which of the following absorption peaks is NOT expected to be observed in the IR spectrum of ketamine?
 - A. An absorption peak at $3350 3500 \text{ cm}^{-1}$
 - B. An absorption peak at $3230 3670 \text{ cm}^{-1}$
 - C. An absorption peak at $2840 3095 \text{ cm}^{-1}$
 - D. An absorption peak at $1680 1800 \text{ cm}^{-1}$
- 8. Which of the following methods is commonly used to identify ketamine in a urine sample?
 - A. Breathalyser
 - B. Gas chromatography-mass spectrometry
 - C. Infrared spectroscopy
 - D. Solvent extraction

Section B: Structured questions

A student dissolved a 5.0 g HK10¢ coin completely in 10 cm³ of 8 M HNO₃. Paper chromatography was carried out, using a propanone-water mixture as the developing solvent. The chromatogram is shown below:

- (a) Suggest a safety precaution for the experiment. Explain briefly.
- (b) With reference to the chromatogram, what are the metals present in a HK10¢ coin?
- (c) After performing paper chromatography, the student performed volumetric analysis to determine the percentage by mass of copper in the coin. The table below summarized the procedure:

Step 1	Remove all the unreacted nitric acid from the reaction mixture.	
Step 2	Dilute the coin solution to 250.0 cm ³ .	
Step 3	Pipette 10.0 cm ³ of the dilute solution into a conical flask.	
Step 4	Add excess potassium iodide to the solution to liberate iodine.	
Step 5	Titrate the resultant solution with 0.1 M sodium thiosulphate solution.	

In step 5, 22.65 cm³ of 0.1 M sodium thiosulphate was required for complete reaction. The reactions involved are

 $\begin{array}{l} 2C \cup^{2+} + 4l^- \longrightarrow C \cup_2 l_2 + l_2 \\ l_2 + 2S_2 O_3^{2-} \longrightarrow S_4 O_6^{2-} + 2l^- \end{array}$

- (i) Suggest an indicator used in this titration.
- (ii) Calculate the percentage by mass of copper in the HK10¢ coin. (Relative atomic mass: Cu = 63.5)

Suggested Answer

Section A

1.	D	5.	D
2.	С	6.	A
3.	С	7.	В
4.	В	8.	В

Section **B**

- (a) As concentrated nitric acid is corrosive, the experiment should be performed in a fume cupboard.
- (b) Cu^{2+} and Ni^{2+}
- (c) (i) Starch solution
 - (ii) Number of moles of $S_2O_3^{2-} = 0.1 \times 0.02265 = 2.27 \times 10^{-3}$

From the two equations, mole ratio of Cu^{2+} : $S_2O_3^{2-} = 1:1$. \therefore number of moles of Cu^{2+} in 10.0 cm³ of solution = 2.27 × 10⁻³

Number of moles of Cu^{2+} in 250.0 cm³ of solution = 2.27 × 10⁻³ x 250.0 / 10.0 = 0.0568

Mass of Cu = 0.0568 mol × 63.5 g mol⁻¹ = 3.61 g

Percentage by mass of Cu in the HK10¢ coin = (3.61 / 5.0) x 100% = 72.2%