Worked Example (Scheme of Separating a Mixture)

I. Devising a scheme to separate a mixture of several cations

An aqueous solution is known to contain the following three cations: $\mathrm{Fe}^{3+}(\mathrm{aq}), \mathrm{Cu}^{2+}(\mathrm{aq})$ and $\mathrm{Zn}^{2+}(\mathrm{aq})$

Devise a scheme to separate the cations.

Solution

1. Add a little and then excess $\mathrm{NaOH}(\mathrm{aq})$ to the solution. $\mathrm{Fe}^{3+}(\mathrm{aq})$ and $\mathrm{Cu}^{2+}(\mathrm{aq})$ form insoluble brown and blue precipitates respectively. $\mathrm{Zn}^{2+}(\mathrm{aq})$ forms a white precipitate first and it dissolves in excess $\mathrm{NaOH}(\mathrm{aq})$ to give a colourless solution.
2. Filter the mixture. Add excess $\mathrm{HCl}(\mathrm{aq})$ to the filtrate and the resultant solution contains $\mathrm{Zn}^{2+}(\mathrm{aq})$.
3. Add excess $\mathrm{NH}_{3}(\mathrm{aq})$ to the residue. Only the blue precipitate dissolves to give a deep blue solution.
4. Filter the mixture. Add excess $\mathrm{HCl}(\mathrm{aq})$ to the filtrate and the resultant solution contains $\mathrm{Cu}^{2+}(\mathrm{aq})$.
5. Add excess $\mathrm{HCl}(\mathrm{aq})$ to dissolve the brown precipitate (residue). This solution contains $\mathrm{Fe}^{3+}(\mathrm{aq})$.

The following flow diagram summarizes the above scheme:

II. Devising a scheme to separate a mixture of several anions

An aqueous solution is known to contain the following three anions:
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}), \mathrm{NO}_{3}-(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$
Devise a scheme to separate the anions in the solution.

Solution

1. Add excess $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ to the solution. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ forms insoluble white precipitate $\mathrm{MgCO}_{3}(\mathrm{~s})$ with $\mathrm{Mg}^{2+}(\mathrm{aq})$.
2. Filter the mixture. The residue is $\mathrm{MgCO}_{3}(\mathrm{~s})$. The filtrate contains $\mathrm{NO}_{3}-(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$.
3. Add excess acidified $\mathrm{AgNO}_{3}(\mathrm{aq})$ to the filtrate. $\mathrm{Cl}^{-}(\mathrm{aq})$ forms insoluble white precipitate $\mathrm{AgCl}(\mathrm{s})$ with $\mathrm{Ag}^{+}(\mathrm{aq})$.
4. Filter the mixture. The residue is $\mathrm{AgCl}(\mathrm{s})$. The filtrate contains $\mathrm{NO}_{3}-(\mathrm{aq})$ as the only anion.

The following flow diagram summarizes the above scheme:

III. Devising a scheme to separate a mixture of organic compounds

Devise a scheme to separate a liquid mixture containing hexane and hexanoic acid. Outline the procedure for the separation.

Solution

1. Add excess sodium hydrogencarbonate solution to the mixture in a separating funnel and shake the mixture. Hexanoic acid reacts with sodium hydrogencarbonate solution and dissolves in the solution (aqueous layer). Hexane has no reaction and forms the organic layer.
2. Allow the aqueous layer and organic layer to separate. Run off the aqueous layer.
3. Regenerate hexanoic acid by adding a small amount of dilute hydrochloric acid to the aqueous layer.

The following flow diagram summarizes the above scheme:

IV. Justifying the choice of an appropriate method for the separation of substances in a mixture

(a) A student is going to separate a mixture of hexane and water by simple distillation because he thinks that there is a large difference in boiling points between them (b.p. of hexane $=69^{\circ} \mathrm{C}$, b.p. of water $=100^{\circ} \mathrm{C}$). Do you think it is a proper method? Explain your answer.
(b) Now, he is going to separate another mixture of hexane and hexan-1-ol (b.p. of hexane $=69^{\circ} \mathrm{C}$, b.p. of hexan-1-ol $=156.4^{\circ} \mathrm{C}$). Do you think it is proper to use simple distillation to separate them? Explain your answer.

Solution

(a) Hexane and water are immiscible. It is not proper to use simple distillation to separate the mixture. The mixture should be separated by using a separating funnel.
(b) Hexane and hexan-1-ol are miscible. The mixture can be separated by simple distillation as there is a large difference in boiling points between hexane and hexan-1-ol.

