Quiz (Acid-Alkali Titration)

Important Remark:

- The end point is the stage at which the indicator changes colour sharply.
- The equivalence point is the stage at which the acid and the alkali have just reacted completely during titration.

1. 2.65 g of sodium carbonate were dissolved in water and made up to a 250.0 cm^{3} solution. $25.0 \mathrm{~cm}^{3}$ of the solution required $20.00 \mathrm{~cm}^{3}$ of a hydrochloric acid for complete reaction. Find the molarity of the hydrochloric acid.
(Relative atomic masses: $\mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Na}=23.0$)
2. What is the volume of 0.050 M sulphuric acid required for complete reaction with each of the following solutions?
(a) $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$
(b) $100.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

Suggested Answer

1. Number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ used
$=$ mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} /$ molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$=2.65 /(23.0 \times 2+12.0+16.0 \times 3)$
$=0.025$

Molarity of the $250.0 \mathrm{~cm}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution
$=0.025 / 0.25$
$=0.1 \mathrm{M}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
Number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $25.0 \mathrm{~cm}^{3}$ of solution
$=0.1 \times 0.025$
$=2.5 \times 10^{-3}$

From the equation, mole ratio of $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{HCl}=1: 2$.
Number of moles of HCl in $20.00 \mathrm{~cm}^{3}$ of solution
$=2.5 \times 10^{-3} \times 2$
$=5 \times 10^{-3}$
Molarity of $\mathrm{HCl}(\mathrm{aq})$
$=5 \times 10^{-3} / 0.02$
$=0.25 \mathrm{M}$
2. (a) Number of moles of NaOH used
$=0.100 \times 0.025$
$=2.5 \times 10^{-3}$
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
From the equation, mole ratio of NaOH to $\mathrm{H}_{2} \mathrm{SO}_{4}=2: 1$.
Number of moles of $0.050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required
$=2.5 \times 10^{-3} / 2$
$=1.25 \times 10^{-3}$

Volume of $0.050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required
$=1.25 \times 10^{-3} / 0.050$
$=0.025 \mathrm{dm}^{3} \quad\left(25.0 \mathrm{~cm}^{3}\right)$
(b) Number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ used
$=0.100 \times 0.1$
$=0.01$
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
From the equation, mole ratio of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to $\mathrm{H}_{2} \mathrm{SO}_{4}=1: 1$.
Number of moles of $0.050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required $=0.01$

Volume of $0.050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required
$=0.01 / 0.050$
$=0.20 \mathrm{dm}^{3} \quad\left(200.0 \mathrm{~cm}^{3}\right)$

