Quiz (Acid-Alkali Titration)

Important Remark:

- The end point is the stage at which the indicator changes colour sharply.
- The equivalence point is the stage at which the acid and the alkali have just reacted completely during titration.
- 1. 2.65 g of sodium carbonate were dissolved in water and made up to a 250.0 cm³ solution. 25.0 cm³ of the solution required 20.00 cm³ of a hydrochloric acid for complete reaction. Find the molarity of the hydrochloric acid. (Relative atomic masses: C = 12.0, O = 16.0, Na = 23.0)
- 2. What is the volume of 0.050 M sulphuric acid required for complete reaction with each of the following solutions?
 - (a) 25.0 cm³ of 0.100 M NaOH(aq)
 - (b) 100.0 cm³ of 0.100 M Na₂CO₃(aq)

Suggested Answer

- 1. Number of moles of Na_2CO_3 used
 - = mass of Na₂CO₃ / molar mass of Na₂CO₃
 - = 2.65 / (23.0 × 2 + 12.0 + 16.0 × 3)
 - = 0.025

Molarity of the 250.0 cm³ Na₂CO₃ solution = 0.025 / 0.25

= 0.1 M

 $Na_2CO_3(aq) + 2HCI(aq) \longrightarrow 2NaCI(aq) + H_2O(I) + CO_2(g)$

Number of moles of Na₂CO₃ in 25.0 cm³ of solution = 0.1×0.025 = 2.5×10^{-3}

From the equation, mole ratio of Na_2CO_3 : HCl = 1 : 2.

Number of moles of HCl in 20.00 cm³ of solution = $2.5 \times 10^{-3} \times 2$ = 5×10^{-3}

Molarity of HCl(aq) = $5 \times 10^{-3} / 0.02$ = 0.25 M

2. (a) Number of moles of NaOH used = 0.100×0.025 = 2.5×10^{-3}

 $H_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(I)$

From the equation, mole ratio of NaOH to $H_2SO_4 = 2:1$.

Number of moles of 0.050 M H₂SO₄ required = $2.5 \times 10^{-3} / 2$ = 1.25×10^{-3} Volume of 0.050 M H₂SO₄ required = $1.25 \times 10^{-3} / 0.050$

 $= 0.025 \,\mathrm{dm^3}$ (25.0 cm³)

- (b) Number of moles of Na₂CO₃ used
 - = 0.100 × 0.1
 - = 0.01

 $H_2SO_4(aq) + Na_2CO_3(aq) \longrightarrow Na_2SO_4(aq) + CO_2(g) + H_2O(I)$

From the equation, mole ratio of Na_2CO_3 to $H_2SO_4 = 1 : 1$.

Number of moles of 0.050 M H_2SO_4 required = 0.01

Volume of 0.050 M H_2SO_4 required = 0.01 / 0.050 = 0.20 dm³ (200.0 cm³)