Quiz (Precipitation Titration)

1. The concentration of chloride ions in an unknown sample was determined by Mohr's method. A standard solution of 0.10 M silver nitrate solution was used to titrate with a sample solution using potassium chromate as indicator. $25.0 \mathrm{~cm}^{3}$ of the sample solution required $22.00 \mathrm{~cm}^{3}$ of the silver nitrate solution to reach the end point in the titration. Calculate the concentration of chloride ions in the sample solution.
2. A student uses the Mohr's method to determine the concentration of chloride ions in a water sample. $25.0 \mathrm{~cm}^{3}$ of the water sample is titrated with 0.100 M silver nitrate solution. $26.70 \mathrm{~cm}^{3}$ of silver nitrate solution is required to reach the end point.
(a) What is the indicator used in the experiment?
(b) Calculate the concentration of chloride ions in the water sample.
3. $25.0 \mathrm{~cm}^{3}$ of a 0.10 M solution of barium hydroxide were placed in a beaker. The electrical conductivity of the solution was measured. Sulphuric acid was then added to the beaker, $5.0 \mathrm{~cm}^{3}$ at a time. The conductivity was measured after each addition. A precipitate formed during the titration and the reaction was represented by the equation: $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

The experimental results are shown in the graph below:

(a) Account for the shape of the graph.
(b) What is the volume of acid required to reach the equivalence point of the titration?
(c) Calculate the molarity of the sulphuric acid.

Suggested Answer

1. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})$

Number of moles of Ag^{+}in $22.00 \mathrm{~cm}^{3}$ of $0.10 \mathrm{M} \mathrm{AgNO}_{3}$ solution
$=0.10 \times 0.022$
$=2.2 \times 10^{-3}$

From the equation, mole ratio of $\mathrm{Ag}^{+}: \mathrm{Cl}^{-}=1: 1$.
Number of moles of Cl^{-}in $25.0 \mathrm{~cm}^{3}$ of solution
$=2.2 \times 10^{-3}$

Concentration of Cl^{-}in the sample solution
$=2.2 \times 10^{-3} / 0.025$
$=0.088 \mathrm{M}$

The concentration of chloride ions in the sample solution was 0.088 M .
2. (a) Chromate indicator
(b) Number of moles of AgNO_{3} required
$=0.100 \times 0.0267$
$=2.67 \times 10^{-3}$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})$
From the equation, mole ratio of Ag^{+}to $\mathrm{Cl}^{-}=1: 1$.
Number of moles of Cl^{-}present in the water sample $=2.67 \times 10^{-3}$
Concentration of $\mathrm{Cl}^{-}(\mathrm{aq})$ in the water sample
$=2.67 \times 10^{-3} / 0.025$
$=0.107 \mathrm{~mol} \mathrm{dm}^{-3}$
3. (a) Conductivity is high at the beginning due to the large number of mobile $\mathrm{Ba}^{2+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ ions.
Conductivity decreases due to continuous removal of $\mathrm{Ba}^{2+}(\mathrm{aq})$ ions (to form $\mathrm{BaSO}_{4}(\mathrm{~s})$) and $\mathrm{OH}^{-(\mathrm{aq})}$ ions (to form $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$). Conductivity is almost zero at the equivalence point because there are very few mobile ions. It then increases sharply due to the addition of excess $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ ions.
(b) $33.0 \mathrm{~cm}^{3}$
(c) $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Number of moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ in $25.0 \mathrm{~cm}^{3}$ of $0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution
$=0.10 \times 0.025$
$=2.5 \times 10^{-3}$
From the equation, mole ratio of $\mathrm{Ba}(\mathrm{OH})_{2}: \mathrm{H}_{2} \mathrm{SO}_{4}=1: 1$
Number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added $=2.5 \times 10^{-3}$
Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution
$=2.5 \times 10^{-3} / 0.033$
$=0.076 \mathrm{M}$

