## Quiz (Precipitation Titration)

- The concentration of chloride ions in an unknown sample was determined by Mohr's method. A standard solution of 0.10 M silver nitrate solution was used to titrate with a sample solution using potassium chromate as indicator. 25.0 cm<sup>3</sup> of the sample solution required 22.00 cm<sup>3</sup> of the silver nitrate solution to reach the end point in the titration. Calculate the concentration of chloride ions in the sample solution.
- 2. A student uses the Mohr's method to determine the concentration of chloride ions in a water sample. 25.0 cm<sup>3</sup> of the water sample is titrated with 0.100 M silver nitrate solution. 26.70 cm<sup>3</sup> of silver nitrate solution is required to reach the end point.
  - (a) What is the indicator used in the experiment?
  - (b) Calculate the concentration of chloride ions in the water sample.
- 3. 25.0 cm<sup>3</sup> of a 0.10 M solution of barium hydroxide were placed in a beaker. The electrical conductivity of the solution was measured. Sulphuric acid was then added to the beaker, 5.0 cm<sup>3</sup> at a time. The conductivity was measured after each addition. A precipitate formed during the titration and the reaction was represented by the equation: Ba(OH)<sub>2</sub>(aq) + H<sub>2</sub>SO<sub>4</sub>(aq) → BaSO<sub>4</sub>(s) + 2H<sub>2</sub>O(I)

The experimental results are shown in the graph below:



- (a) Account for the shape of the graph.
- (b) What is the volume of acid required to reach the equivalence point of the titration?
- (c) Calculate the molarity of the sulphuric acid.

## **Suggested Answer**

1.  $Ag^+(aq) + Cl^-(aq) \longrightarrow AgCl(s)$ 

Number of moles of Ag<sup>+</sup> in 22.00 cm<sup>3</sup> of 0.10 M AgNO<sub>3</sub> solution =  $0.10 \times 0.022$ =  $2.2 \times 10^{-3}$ 

From the equation, mole ratio of  $Ag^+$ :  $CI^- = 1 : 1$ .

```
Number of moles of CI- in 25.0 cm<sup>3</sup> of solution = 2.2 \times 10^{-3}
```

Concentration of CI- in the sample solution =  $2.2 \times 10^{-3} / 0.025$ = 0.088 M

The concentration of chloride ions in the sample solution was 0.088 M.

- 2. (a) Chromate indicator
  - (b) Number of moles of AgNO<sub>3</sub> required =  $0.100 \times 0.0267$ =  $2.67 \times 10^{-3}$

 $Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s)$ 

From the equation, mole ratio of  $Ag^+$  to  $CI^- = 1 : 1$ .

Number of moles of CI- present in the water sample =  $2.67 \times 10^{-3}$ 

Concentration of Cl-(aq) in the water sample =  $2.67 \times 10^{-3} / 0.025$  = 0.107 mol dm<sup>-3</sup>

- 3. (a) Conductivity is high at the beginning due to the large number of mobile Ba<sup>2+</sup>(aq) and OH<sup>-</sup>(aq) ions. Conductivity decreases due to continuous removal of Ba<sup>2+</sup>(aq) ions (to form BaSO<sub>4</sub>(s)) and OH<sup>-</sup>(aq) ions (to form H<sub>2</sub>O(I)). Conductivity is almost zero at the equivalence point because there are very few mobile ions. It then increases sharply due to the addition of excess H<sup>+</sup>(aq) and SO<sub>4</sub><sup>2-</sup>(aq) ions.
  - (b) 33.0 cm<sup>3</sup>
  - (c)  $Ba(OH)_2(aq) + H_2SO_4(aq) \longrightarrow BaSO_4(s) + 2H_2O(l)$

Number of moles of Ba(OH)<sub>2</sub> in 25.0 cm<sup>3</sup> of 0.10 M Ba(OH)<sub>2</sub> solution =  $0.10 \times 0.025$ =  $2.5 \times 10^{-3}$ 

From the equation, mole ratio of  $Ba(OH)_2$ :  $H_2SO_4 = 1 : 1$ 

Number of moles of  $H_2SO_4$  added =  $2.5 \times 10^{-3}$ 

Molarity of  $H_2SO_4$  solution = 2.5 × 10<sup>-3</sup> / 0.033 = 0.076 M