Suggested Answers on Note (Chapter 8) P.2

(a) Lightest: Aluminium Heaviest: Platinum

(b) Gold, titanium and platinum

(c) Copper, gold, iron, platinum, titanium and tungsten

(d) Aluminium, copper, silver and platinum

Suggested Answers on Note (Chapter 8) P.4 – 6

Resists corrosion – window frame
 Good conductor of heat – cooking pot
 Good conductor of electricity – overhead cable
 Low density – soft drink can

2.

Article	Metal used	Properties that make the metal suitable for making the article	
Soft drink cans	aluminium	strong, light, malleable, resists corrosion	
Electric wires	copper	very good conductor of electricity, ductile, resists corrosion	
Railings	iron	strong, ductile, cheap	
Jewellery	gold	attractive yellow colour, resists corrosion, malleable and ductile	
Light bulb filament	tungsten	very high melting point, gets 'white hot' without melting	
Window frames	aluminium	strong, resists corrosion	

- 3. (a) High electrical conductivity
 - (b) Aluminium Low density, high electrical conductivity, high resistance to corrosion
- 4. (a) Silver has shiny silvery appearance which is attractive.
 - (b) The cost is very high. Pure metal is quite soft.
 - (c) Electroplating
- 5. The tensile strength is high and the cost is low.

- 6. (a) C valuable
 D high tensile strength and high resistance to corrosion
 - (b) D high tensile strength, high resistance to corrosion and high electrical conductivity.
 - (c) D high tensile strength, high resistance to corrosion and low cost.

Suggested Answers on Note (Chapter 8) P.14 – 16

A. Metals low in the reactivity series

2HgO(s)
$$\xrightarrow{\Delta}$$
 2Hg(l) + O₂(g) (red / orange) (silvery)

2Ag₂O(s) $\xrightarrow{\Delta}$ 4Ag(s) + O₂(g) (grey / black) (silvery)

B. Extraction of Metals by Heating the Metal Oxides with Reducing Agent 還原劑

Reduction with metals: Competition for oxygen

CuO + Mg
$$\xrightarrow{\Delta}$$
 Cu + MgO (Black) (Silvery) (reddish (white) brown)

Reduced by carbon by heating the oxides on a charcoal block.

e.g.Lead(II) oxide

PbO + C
$$\longrightarrow$$
 Pb + CO
2PbO + C \longrightarrow 2Pb + CO₂
e.g. Copper(II) oxide
CuO + C \longrightarrow Cu + CO
2CuO + C \longrightarrow 2Cu + CO₂

Reduction of metal oxides with other reducing agents (e.g. CO, H₂)

e.g. Extraction of iron

$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$

 $Fe_2O_3 + 3H_2 \longrightarrow 2Fe + 3H_2O$

Suggested Answers on Note (Chapter 8) P.17 – 18

- 1. (a) Reactivity of B < A, C, D
 - (b) Reactivity of A > B, C, D
 - (c) Reactive of B, C < A, D

Conclusion: Reactivity A > D > C> B

- 2. (a) Too soft and low tensile strength. Does not resist corrosion.
 - (b) (i) Low cost, high tensile strength.
 - (ii) Poor resistance to corrosion. It rusts easily.
 - (c) Resists corrosion better than iron. Less dense than iron but high tensile strength.
- 3. (a) D (high m.p.; metals conduct electricity in solid state)
 - (b) C (ionic structures have high m.p.; conduct electricity when molten but not solid)
 - (c) A (high m.p.; does not conduct electricity under any conditions)
 - (d) B (low m.p.; does not conduct electricity under any conditions)

Suggested Answers on Note (Chapter 8) P.20

(i)
$$CaCO_3(s) \longrightarrow \Delta \longrightarrow CaO(s) + CO_2(g)$$

(ii)
$$2Ag_2CO_3(s) \longrightarrow 4Ag(s) + 2CO_2(g) + O_2(g)$$

(iii)
$$2NaHCO_3(s) \longrightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$

(iv)
$$Mg(HCO_3)_2(s) \longrightarrow MgCO_3(s) + CO_2(g) + H_2O(g)$$

(v) NaOH(s)
$$\longrightarrow \Delta \longrightarrow$$
 No reaction

(vi)
$$Ca(OH)_2(s) \longrightarrow CaO(s) + H_2O(g)$$

(vii)
$$Hg(OH)_2(s) \longrightarrow \Delta \longrightarrow Hydroxide not exist$$

(viii) 2NaNO₃(s)
$$\longrightarrow \Delta \longrightarrow$$
 2NaNO₂(s) + O₂(g)

(ix)
$$2\text{Fe}(NO_3)_2(s) \longrightarrow \Delta \longrightarrow 2\text{FeO}(s) + 4NO_2(g) + O_2(g)$$

(x)
$$2AgNO_3(s) \longrightarrow \Delta \longrightarrow 2Ag(s) + 2NO_2(g) + O_2(g)$$

Suggested Answers on Note (Chapter 8) P.22 – 24

1.

		Advantage(s)	Disadvantage(s)
(a)	a copper cooking pot with a glass one	 better appearance (transparent) helps to conserve copper resources no corrosion occurs 	• easily broken
(b)	an aluminium soft drink can with a plastic one	· · · · · · · · · · · · · · · · · · ·	easily scratched
(c)	coins with money notes	 lower density helps to conserve metal resources no corrosion occurs less storage space required 	 not as durable as coins more easily forged easily damaged

- 2. Recycle everything we can, e.g. newspapers, glass, cans, aluminium foils and pans, etc.
 - Return coat hangers to the cleaners.
 - Do not buy products with excess packaging.
- 3. (a) Iron(III) oxide
 - (b) calcium carbonate \longrightarrow Δ calcium oxide + carbon dioxide
 - (c) iron(III) oxide + carbon monoxide $\longrightarrow \Delta \longrightarrow$ iron + carbon dioxide
- 4. (a) (i) Aluminium is lighter.
 - (ii) To increase the strength of the cables.
 - (b) (i) The price of the metal will be lower.
 - (ii) Greater use of titanium (lighter) structures
 - Greater use of stronger titanium items
 - New uses of titanium
 - Cheaper hip joint replacements