$\textbf{Metal + Air / Oxygen} \longrightarrow \textbf{Metal oxide}$

Metals	Reaction with oxygen	Other observations	Equations		
Potassium (K)	Only a little heat is required to start the reaction.	Lilac (pure purple) flame (淡 紫色火焰)	$4K(s) + O_2(g) \longrightarrow 2K_2O(s)$		
Sodium (Na)	(強烈的) with a large amount of heat energy released. White powder of oxide formed.	Golden yellow flame	4Na + O ₂ \longrightarrow 2Na ₂ O (white)		
Calcium (Ca)	Strong heating	Brick-red flame (磚紅色)	$2Ca + O_2 \longrightarrow 2CaO$ (white)		
Magnesium (Mg)	heat is given out. White powder	Dazzling (眩目的) white flame	2Mg + $O_2 \longrightarrow$ 2MgO (white)		
Aluminium (Al)	less vigorous.	React with no flame	4AI + $3O_2 \longrightarrow 2AI_2O_3$ (white)		
Zinc (Zn)	Strong heating	The powder left is yellow when hot and white when cold	2Zn + O ₂ \longrightarrow 2ZnO ZnO: hot – yellow, cold – white		
Iron (Fe)	required. Some heat evolved.	lron powder burns with sparks (火花)	$2Fe + O_2 \longrightarrow 2FeO (green)$ $4Fe + 3O_2 \longrightarrow 2Fe_2O_3 (brown)$ $3Fe + 2O_2 \longrightarrow Fe_3O_4 (black)$ $[Fe_3O_4 = FeO \bullet Fe_2O_3]$		
Lead (Pb)	Strong heating required. Oxide forms only on the surface of	Melts on strong heating to silvery ball; a powder which is orange when hot and yellow when cold on the surface	2Pb + O₂ → 2PbO PbO: hot – orange, cold – yellow		
Copper (Cu)	metal.	Surface turns black	$2Cu + O_2 \longrightarrow 2CuO (black)$		
Mercury (Hg)		Red powder on the surface	2Hg + $O_2 \longrightarrow$ 2HgO (red)		
Silver (Ag) Gold (Au)	Silver and gold show no change even when heated strongly.				

Metals react with cold water		Metal + Water \longrightarrow Metal hydroxide + Hydrogen			
Potassium Sodium	With forceps, drop a small piece of metal into a trough of water. The hydrogen that is formed burns. Potassium reacts violently with water.	1. Reacts violently with cold waterEquation: $2K + 2H_2O \longrightarrow 2KOH + H_2$ 2. Floats on water and produces H_2 gas $2K + 2H_2O \longrightarrow 2KOH + H_2$ 3. Moves around the surface of the water $2Na + 2H_2O \longrightarrow 2NaOH + H_2$ 4. Burns with coloured flames $Floats = 1000 + 10000 + 100000 + 100000 + 100000 + 100000 + 10000 + 100000 + 100000$			
Calcium	hydrogen water hydrogen bubbles inverted funnel calcium	 Metals sink to the bottom Hydrogen gas formed at a moderate rate Calcium gradually disappears Solution becomes cloudy as Ca(OH)₂ is slightly soluble in water 			

Heated metals react with steam $Metal + Steam \longrightarrow Metal Oxide + Hydrogen$

* The **oxide layer** on the surface of aluminium prevents the metal from reaction. If we remove the oxide layer, aluminium reacts with steam.

Heated metals do not react with water or steam

Suggested Answers on Note (Chapter 9) P.7

Hydrochloric acid \longrightarrow Metal chloride + Hydrogen

Metal + Sulphuric acid — Metal sulphate + Hydrogen Nitric acid — Metal nitrate + Hydrogen

1. (a) Magnesium + dilute hydrochloric acid

 $Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$

(b) Calcium + very dilute nitric acid

 $Ca(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + H_2(g)$

(c) Copper + dilute sulphuric acid

No reaction

(d) Iron + very dilute nitric acid

 $Fe(s) + 2HNO_3(aq) \longrightarrow Fe(NO_3)_2(aq) + H_2(g)$

- 2. (a) Iron / Nickel / Chromium
 - (b) $Fe(s) + H_2SO_4(aq) \longrightarrow FeSO_4(aq) + H_2(g)$ $2Cr(s) + 3H_2SO_4(aq) \longrightarrow Cr_2(SO_4)_3(aq) + 3H_2(g)$ $Ni(s) + H_2SO_4(aq) \longrightarrow NiSO_4(aq) + H_2(g)$
- 3. (a) First, lead reacts slowly and colourless gas bubble evolved. Then, reaction stop and the surface of lead is covered by a white layer.
 - (b) $Pb(s) + 2HCI(aq) \longrightarrow PbCI_2(s) + H_2(g)$
- 4. (a) B > A > D > C
 - (b) A: Zinc
 - B: Calcium
 - C: Copper
 - D: Iron

- a. $H^+(aq) + OH^-(aq) \longrightarrow H_2O(I)$
- b. $2l^{-}(aq) + Cl_{2}(g) \longrightarrow 2Cl^{-}(aq) + l_{2}(aq)$
- c. $SnO(s) + 2H^+(aq) \longrightarrow Sn^{2+}(aq) + H_2O(I)$
- d. $2Na(s) + 2H^+(aq) \longrightarrow 2Na^+(aq) + H_2(g)$
- e. $Fe^{3+}(aq) + 3OH^{-}(aq) \longrightarrow Fe(OH)_{3}(s)$
- f. $2Ag^{+}(aq) + 2OH^{-}(aq) \longrightarrow Ag_2O(s) + H_2O(l)$
- g. $Cu(s) + 4H^+(aq) + 2NO_3(aq) \longrightarrow Cu^{2+}(aq) + 2NO_2(g) + 2H_2O(l)$
- h. $CaCO_3(s) + 2H^+(aq) \longrightarrow Ca^{2+}(aq) + CO_2(g) + H_2O(I)$
- i. $2MnO_4(aq) + 16H(aq) + 10C(aq) \longrightarrow 2Mn^{2+}(aq) + 5C(g) + 8H_2O(g)$
- j. $Cr_2O_{7^{2-}}(aq) + 14H^+(aq) + 6Fe^{2+}(aq) \longrightarrow 6Fe^{3+}(aq) + 2Cr^{3+}(aq) + 7H_2O(I)$

Metal	Cu ²⁺ (aq)	Mg ²⁺ (aq)	Zn ²⁺ (aq)	Fe ²⁺ (aq)	Ag⁺(aq)
Copper		No change	No change	No change	$Cu + 2AgNO_3$ $\rightarrow Cu(NO_3)_2 + 2Ag$ $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$
Magnesium	$\begin{array}{c} Mg + Cu(NO_3)_2 \\ \rightarrow Mg(NO_3)_2 + \\ Cu \end{array}$		$\begin{array}{c} Mg + Zn(NO_3)_2 \\ \rightarrow Mg(NO_3)_2 + \\ Zn \end{array}$	$\begin{array}{c} Mg + Fe(NO_3)_2 \\ \rightarrow Mg(NO_3)_2 + \\ Fe \end{array}$	Mg + 2AgNO ₃ → Mg(NO ₃) ₂ + 2Ag
	Mg + Cu²+ → Mg²+ + Cu		Mg + Zn²+ → Mg²+ + Zn	Mg + Fe²+ → Mg²+ + Fe	Mg + 2Ag⁺ → Mg²⁺ + 2Ag
Zinc	Zn + Cu(NO ₃)₂ → Zn(NO ₃)₂ + Cu	No change		$ \begin{array}{l} \text{Zn + Fe(NO_3)_2} \\ \rightarrow \text{Zn}(NO_3)_2 + \\ \text{Fe} \end{array} $	$ \begin{array}{l} \text{Zn} + 2\text{AgNO}_3 \\ \rightarrow \text{Zn}(\text{NO}_3)_2 + \\ 2\text{Ag} \end{array} $
	Zn + Cu²+ → Zn²+ + Cu			Zn + Fe²+ → Zn²+ + Fe	Zn + 2Ag⁺ → Zn²⁺ + 2Ag
Iron	Fe + Cu(NO ₃) ₂ → Fe(NO ₃) ₂ + Cu	No change	No change		Fe + 2AgNO₃ → Fe(NO₃)₂ + 2Ag
	Fe + Cu²+ → Fe²+ + Cu				Fe + 2Ag⁺ → Fe²⁺ + 2Ag
Silver	No change	No change	No change	No change	

- 1. (a) No reaction
 - (b) $Mg(s) + FeBr_2(aq) \longrightarrow MgBr_2(aq) + Fe(s)$
 - (c) No reaction
 - (d) $2AI(s) + 3ZnSO_4(aq) \longrightarrow AI_2(SO_4)_3(aq) + 3Zn(s)$
- 2. (a) Ca(s) + $2H_2O(I) \longrightarrow Ca(OH)_2(aq) + H_2(g)$ [No ionic equation]
 - (b) No.
 - (c) Fe(s) + $2H^+(aq) \longrightarrow Fe^{2+}(aq) + H_2(g)$
 - (d) No. (As CaSO₄(s))
 - (e) $Mg(s) + Pb^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Pb(s)$

(a) sodium 1.

(b) copper, iron

(d) aluminium, sodium

- (c) copper, zinc (and iron)
- (e) sodium
- 2. (a) P:zinc Q : silver (or copper)
 - (b) magnesium, zinc, silver (or copper)
 - (c) $Zn(s) + 2H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2(q)$
- 3. (a) Rb₂O

The melting point of Rb₂O is higher than that of SO₃ because Rb₂O is an ionic compound, the ions are held together by strong electrostatic force while SO_3 is a covalent compound, the molecules are held together by weak van der Waal's force.

- (b) Rb is more reactive than K because the size of Rb atom is larger, its outermost electron is held less strongly and is thus easier to be lost.
- (c) Electrolysis of molten RbCl, Rb is liberated at the cathode.
- (d) Rb melts to a silvery ball and darts about on the water surface with a hissing sound, becoming smaller and smaller in size. Hydrogen gas is given off, and it burns spontaneously.

 $2Rb(s) + 2H_2O(I) \longrightarrow 2RbOH(aq) + H_2(g)$

- (e) Rb has two isotopes ⁸⁵Rb and ⁸⁷Rb. 85.5 is the weighted average.
- flammable and explosive. (f) (i)
 - (ii) keep out of water.

- (f) copper

- 4. (a) A layer of inert oxide of aluminium (Al₂O₃) prevents the metal from further oxidation.
 - (b) Aluminium is lighter than steel.
 - (c) Since soft-drink may contain acids that may dissolve the Al₂O₃ layer, the plastic film is used to protect the oxide from contact with the soft-drink.
 - (d) hydrochloric acid
 - (e) $3HCI(aq) + AI(OH)_3(s) \longrightarrow AICI_3(aq) + 3H_2O(I)$
 - (a) (i) $2H^+(aq) + Z(s) \longrightarrow Z^+(aq) + H_2(g)$ (ii) $Y(s) + Fe^{2+}(aq) \longrightarrow Fe(s) + Y^{2+}(aq)$
 - (b) Z > Y > Fe > X

5.

From experiment I and II, Z is the most reactive metal because it displaces hydrogen from water.

From experiment II, Y must be more reactive than Fe because it displaces iron from FeSO₄ solution.

From experiment III, X must be the least reactive metal (e.g. Ag) because its oxide X_2O decomposes to give the metal on heating.

- 6. (a) hydrogen
 - (b) Copper does not react with dilute HCI.
 Copper forms a black powder.
 Copper does not give a flame when heated.
 - (c) (i) magnesium / calcium / zinc.
 - (ii) e.g. magnesium oxide.
 - (iii) e.g. $Mg(s) + 2HCI(aq) \longrightarrow MgCI_2(aq) + H_2(g)$
- 7. (a) Lithium and sodium (density $< 1.00 \text{ g/cm}^3$).
 - (b) copper
 - (c) (i) Lithium. It floats on water but is less active than sodium.
 - (ii) $2Li(s) + 2H_2O(I) \longrightarrow 2LiOH(aq) + H_2(g)$

- 8. (a) $2AI(s) + 3CuSO_4(aq) \longrightarrow AI_2(SO_4)_3(aq) + 3Cu(s)$
 - (b) Becomes covered with a brown deposit.
 - (c) Aluminium takes the place of copper in copper(II) sulphate.
 - (d) e.g. calcium ions. Al is lower than Ca in the reactivity series.
 - (e) Do it again after finished Section 3. 6 g of Al \longrightarrow 0.22 moles of Al; from equation, 0.22 moles Al \longrightarrow 0.33 moles Cu \longrightarrow 21.12 g Cu.
- 9. (a) B, C, D, A
 - (b) B: silver is displaced. D: no reaction.
 - (c) Iron or lead. The metal must be above copper (as it reacts with CuSO₄ solution) and below zinc (no reaction with ZnSO₄ solution).
- 10. (a) Mg(s) + CuSO₄(aq) → MgSO₄(aq) + Cu(s)
 Mg dissolves, solution turns colourless / pale blue from blue, brown solid gives out.
 - (b) No reaction.
 - (c) $Zn(s) + 2AgNO_3(aq) \longrightarrow Zn(NO_3)_2(aq) + 2Ag(s)$ Zn dissolves, solution remains colourless, black / grey solid gives out.
 - (d) $Ca(s) + 2H_2O(I) \longrightarrow Ca(OH)_2(aq) + H_2(g)$ Ca dissolves, solution remains colourless, colourless gas bubbles gives out.
 - (e) No reaction.
 - (f) $2PbO(s) + C(s) \longrightarrow 2Pb(s) + CO_2(g)$ PbO turn orange from yellow when hot, silvery solid gives out.

- 11. (a) D but not A can react with cold water. Therefore D is more reactive.
 - (b) C more reactive. As oxide of B is reduced by heat alone, B is low in the reactivity series and will not react with dilute acid.
 - (c) B, A, C, D.
 - (d) (i) The order of reactivity is the order in which the metals were discovered.
 - (ii) More reactive metals discovered recently. It was more difficult to separate the metals from their compounds.
 - (e) B is silver or gold (oxide reduced by heat alone).D is a very reactive metal, e.g. sodium.A and C are between Ca and Pb in the reactivity series, with C above A.
- 12. (a) (i) Iron dissolved.
 - Gas bubbles were given off. Fe(s) + 2HCl(aq) \longrightarrow FeCl₂(aq) + H₂(g)
 - (ii) A golden yellow flame was observed.
 - A white smoke was formed. $4Na(s) + O_2(g) \longrightarrow 2Na_2O(s)$
 - (iii) The yellow solid turned orange.
 A solid with metallic lustre was formed. 2PbO(s) + C(s) → 2Pb(s) + CO₂(g)
 - (iv) Zinc dissolved.
 - A brown solid deposited.
 - The blue colour of the solution faded gradually.
 - $Zn(s) + CuSO_4(aq) \longrightarrow Cu(s) + ZnSO_4(aq)$
 - (v) A brown solid with metallic lustre was formed. $CuO(s) + Mg(s) \longrightarrow Cu(s) + MgO(s)$
 - (b) (i) Calcium oxide is very stable. It cannot be reduced by carbon.
 - (ii) Copper is less reactive than magnesium. It cannot displace magnesium from magnesium nitrate solution.

- 13. (a) Group II
 - (b) (i) X burned with a very bright light. (ii) $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$
 - (c) (i) X dissolved. / Gas bubbles were given off. (ii) $Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$
 - (d) (i) Y burned with a lilac flame. (ii) $4K(s) + O_2(g) \longrightarrow 2K_2O(s)$
 - (e) (i) Z might be iron. (ii) Fe(s) + $H_2SO_4(aq) \longrightarrow FeSO_4(aq) + H_2(g)$
- 14. (a) (i) Caesium hydroxide
 - (ii) $2Cs(s) + 2H_2O(I) \longrightarrow 2CsOH(aq) + H_2(g)$
 - (iii) Difference Caesium reacts more vigorously.
 Similiarity Similar products (hydroxide + hydrogen) are formed.
 - (b) Caesium is a soft metal.
 - Caesium has a low melting point.