Suggested Answers on Note (Chapter 10) P.1

Elements	Н	С
Relative atomic masses	1	12
One mole weighs	1g	12g
Number of atoms in 1 mole	6 x 10 ²³	6 x 10 ²³
Number of atoms in 2 mole	2 x 6 x 10 ²³	2 x 6 x 10 ²³

Formula	Term to describe its mass	Molecular or Formula mass
H ₂ O	Molecular / Formula	(1) x 2 + (16) x 1 = 18
Ca(OH) ₂	Formula	74
H ₂ SO ₄	Molecular / Formula	98
Na ₂ CO ₃ .10H ₂ O	Formula	286

Suggested Answers on Note (Chapter 10) P.3

Substance	Symbol / chemical formula	Relative atomic mass(es)	Formula mass / relative molecular mass	Molar mass (mass of 1 mole of substance)
Magnesium	Mg	Mg = 24.3	1 x 24.3 = 24.3	24.3 g mol-1
Nitrogen gas	N ₂	N = 14.0	2 x 14.0 = 28.0	28.0 g mol⁻¹
Sulphur dioxide	SO ₂	O = 16.0 S = 32.1	2 x 16.0 = 32.0 1 x 32.1 = 32.1 Total =64.1	64.1 g mol⁻¹
Iron(III) sulphate	Fe ₂ (SO ₄) ₃	O = 16.0 S = 32.1 Fe = 55.8	12 x 16.0 = 192.0 3 x 32.1 = 96.3 2 x 55.8 = 111.6 Total = 399.9	399.9 g mol⁻¹

Examples:

1.

- Molar mass of carbon dioxide = 12 + 16 x 2 = 44 g Mass of carbon dioxide = 7.5 x 44 = 330 g
- 2. Number of mole of Mg = 2.4 / 24 = 0.1 Number of Mg atom = 0.1 x 6 x 10²³ = 6 x 10²²
- 3. Number of Na atoms = 1.5 x L = 1.5 x 6 x 10²³ = 9 x 10²³
- 4. Number of moles of zinc ions = 3 x 10²⁴ / 6 x 10²³ = 5 There are 5 moles of ions in 3 x 10²⁴ zinc ions.
- 5. (a) Number of SO₂ molecules = $0.35 \times 6 \times 10^{23}$ = 2.1×10^{23}
 - (b) One SO₂ molecule contains 1 S atom and 2 O atoms Number of atoms present = 3 x 2.1 x 10²³ = 6.3 x 10²³

Suggested Answers on Note (Chapter 10) P.4 – 9

Substance	Chemical formula	Relative atomic masses	Formula mass / relative molecular mass	Molar mass
Hydrogen chloride	HCI	H = 1.0 Cl = 35.5	36.5	36.5 g mol⁻¹
Ethanoic acid	CH₃COOH	H = 1.0 C = 12.0 O = 16.0	60.0	60.0 g mol⁻¹
Aluminium hydroxide	AI(OH)₃	H = 1.0 O = 16.0 AI = 27.0	78.0	78.0 g mol⁻¹
Magnesium carbonate	MgCO₃	C = 12.0 O = 16.0 Mg = 24.3	84.3	84.3 g mol⁻¹

2. Number of mole of oxygen = $20 / (16 \times 2)$ = 0.625 3. (a) Molar mass of $C_xH_{2x} = 210 / 2.5$ = 84 g

- (b) 84 = 12x + 2xx = 6 therefore, the chemical formula = C_6H_{12}
- 4. (a) Number of moles of Cu = 12.7 / 63.5 = 0.2Number of copper atoms = $0.2 \times 6 \times 10^{23} = 1.2 \times 10^{23}$
 - (b) Number of moles of iron = 3×10^{22} / 6×10^{23} = 0.05 Mass of iron = 0.05 x 55.8 = 2.79 g
- 5. (a) no. of moles of ammonia = 0.25no. of ammonia molecules = $0.25 \times 6 \times 10^{23} = 1.5 \times 10^{23}$
 - (b) One NH₃ molecule contains 1 N atom and 3 H atoms no. of N atoms = 1.5×10^{23}
 - (c) no. of H atoms = $1.5 \times 10^{23} \times 3 = 4.5 \times 10^{23}$
 - (d) total number of atoms = $1.5 \times 10^{23} + 4.5 \times 10^{23} = 6 \times 10^{23}$
- 6. (a) no. of mole of MgCl₂ = 1.2×10^{24} / 6×10^{23} = 2 mass of MgCl₂ = $2 \times (24.3 + 35.5 \times 2)$ = 190.6 g
 - (b) no. of mole of Mg²⁺ = 2 mass of Mg²⁺ = 2 x 24.3 = 48.6 g
 - (c) no. of mole of Cl⁻ = 2 x 2 = 4 mass of Cl⁻ = 4 x 35.5 = 142 g
- 7. (a) no. of formula units = $4.5 \times 6 \times 10^{23} = 2.7 \times 10^{24}$
 - (b) One formula unit of K₂SO₄ contains 2 K⁺ ions and 1 SO₄²⁻ ion no. of ions = 2.7 x 10²⁴ x (2 + 1) = 8.1 x 10²⁴
- 8. (a) no. of moles of CaCl₂ = 3.3 / $(40 + 35.5 \times 2) = 0.03$ no. of formula units of CaCl₂ = 0.03 x 6 x 10²³ = 1.8 x 10²²
 - (b) no. of chloride ions = $1.8 \times 10^{22} \times 2 = 3.6 \times 10^{22}$
- 9. No. of H₂O molecules in 1 mole = 6×10^{23} Mass of one H₂O molecule = $18 / 6 \times 10^{23} = 3 \times 10^{-23}$ g
- 10. (a) Molar mass of Be = 9 g 1 mole Be atom = 6×10^{23} Be atom = 9 g Mass of 1 Be atom = 9 / 6×10^{23} = 1.5×10^{-23} g

(b) Mass of 1 SO₂ molecule =
$$(32 + 2 \times 16) / 6 \times 10^{23}$$

= 1.06 x 10⁻²² g

11.

Substance	Chemical formula	Molar mass of substance (g mol ⁻¹)	Mass of substance present (g)	Number of moles of substance present (mol)	Number of molecules / formula units present
Nitrogen dioxide	NO ₂	46	59.8	1.30	7.8 x 10 ²³
Lead(II) oxide	PbO	223	44.6	0.2	1.2 x 10 ²³
Ammonium carbonate	(NH ₄) ₂ CO ₃	96	864	9	5.4 x 10 ²⁴ formula units

12. Remark: L is the Avogadro's Number

Substance	Number of mole	Mass (g)	Number of particle
Chlorine molecule (Cl ₂)	2	142	Cl ₂ molecules: 2L Cl atoms: 4L
Phosphorus (P₄)	0.5	62	P₄ molecules: <mark>L/2</mark> P atoms: <mark>2L</mark>
Sulphur (S ₈)	0.5	128	S ₈ molecules: L/2 S atoms: 4L
Sulphur dioxide (SO ₂)	2	128	SO ₂ molecules: 2L S atoms: 2L O atoms: 4L
Sodium hydroxide (NaOH)	2	80	Total no. of ions: 2.4 x 10 ²⁴ = 4L Na ⁺ ions: 2L OH ⁻ ions 2L
Sulphuric acid (H2SO4)	0.5	49	H atoms: L S atoms: L/2 O atoms: 2L H ⁺ ions: L SO4 ²⁻ ions: L/2
Sucrose (C12H22O11)	0.00833	2.85	C atoms: 6 x 10 ²² = 0.1L H atoms: (0.1/12) x 22L O atoms: (0.1/12) x 11L
Hydrated copper(II) sulphate (CuSO4.5H2O)	0.5	125	H ₂ O molecules: 5L/2 Cu ²⁺ ions: L/2 SO4 ²⁻ ions: L/2
Hydrated sodium carbonate (Na2CO3.10H2O)	2	572	H ₂ O molecules: 20L Na ⁺ ions: 4L CO ₃ ²⁻ ions: 2L

Suggested Answers on Note (Chapter 10) P.11 – 14

- 1. no. of moles of $CO_2 = 12 / 24 = 0.5$ mass of $CO_2 = 0.5 \times (12 + 16 \times 2) = 22.0 \text{ g}$
- 2. no. of moles of NH₃ = 6 / 24 = 0.25 no. of NH₃ molecules = $0.25 \times 6 \times 10^{23} = 1.5 \times 10^{23}$
- 3. no. of moles of $Cl_2 = 4.56 / 24 = 0.19$
- 4. no. of moles of $O_2 = 6 / 24 = 0.25$ no. of O_2 molecules = $0.25 \times 6 \times 10^{23} = 1.5 \times 10^{23}$ no. of O atoms = $2 \times 1.5 \times 10^{23} = 3 \times 10^{23}$
- 5. no. of moles of N₂ = 4.2 / 28 = 0.15 volume of N₂ = 0.15 x 24 = 3.6 dm³

۲	
O	٠

Gas	Mass of 1 mole of gas	Mass of gas present	Number of moles of gas	Volume of gas at r.t.p.
H ₂	2.0 g	0.40 g	0.20 mol	4.8 dm ³
CO ₂	44.0 g	4.0 g	0.091	2.18 dm ³
SO ₂	64.0 g	16.0 g	0.25	6000 cm ³
O ₂	32.0 g	39.68 g	1.24 mol	29.76 dm ³

7. no. of mole of $CH_4 = 1 / 24 = 0.0417$ no. of molecules = $0.0417 \times 6 \times 10^{23} = 2.5 \times 10^{22}$

^{8.}

Gas	Molar mass (g mol ⁻¹)	Mass of gas (g)	No. of moles of gas	No. of gas molecules	Volume of gas at r.t.p. (dm ³)
H ₂	2.0	1.0	0.5	3 x 10 ²³	12.0
O ₂	32.0	12.8	0.4	2.4 x 10 ²³	9.6
CO ₂	44.0	22.0	0.5	3 x 10 ²³	12.0
CH₄	16.0	2.0	0.125	7.5 x 10 ²²	3.0
SO3	80.0	20.0	0.25	1.5 x 10 ²³	6.0
Unknown X	17.0	4.25	0.25	1.5 x 10 ²³	6.0

- 9. Number of moles of methane gas
 - = volume of methane gas / molar volume of gas
 - $= 1.0 \text{ dm}^3 / 24.0 \text{ dm}^3 \text{ mol}^{-1}$
 - = 0.042 mol

Number of methane molecules = number of moles of methane gas x L = $0.042 \text{ mol x } 6.02 \text{ x } 10^{23} \text{ mol}^{-1}$ = $2.5 \text{ x } 10^{22}$

- 10. Number of moles of gas
 - = volume of gas / molar volume of gas
 - $= 600 \text{ cm}^3 / 24\,000 \text{ cm}^3 \text{ mol}^{-1}$
 - = 0.0250 mol

Mass of gas = (78.98 - 77.53) g = 1.45 g

Molar mass of gas = 1.45 g / 0.0250 mol = 58.0 g mol⁻¹

Suggested Answers on Note (Chapter 10) P.16 – 17

1.				
Urea CC)(NH ₂) ₂ 9	6 N = [28 / (12+16+28+4)] x	100% =	46.67%
Sodium Na	n itrate NO ₃ 9	6 N = [14 / (23+14+48)] x 10)0% =	16.47%
Aqueou NH	Js ammon 3	ia & N = [14 / (14+3)] x 100%	=	82.35%
Ammoi (N⊦	nium sulph 14)2SO4 %	ate % N = [28 / (28+8+32+64)] x	= 100% =	21.21%
Ammoi	nium phos	phate		

 $(NH_4)_3PO_4$ % N = $[42 / (42+12+31+64)] \times 100\%$ = 28.19%

2. Complete the following table:

Compound	Formula	Relative atomic mass	Formula mass / Relative molecular mass	% by mass of each element in the compound
Sodium chloride	NaCl	Na = 23.1 Cl = 35.5	58.6	% Na = 39.4% % Cl = 60.6%
Water	H ₂ O	H = 1.0 O = 16.0	18.0	% H = 11.1% % O = 88.9%
Zinc hydroxide	Zn(OH) ₂	Zn = 65.4 O = 16.0 H = 1.0	99.4	% Zn = 65.8% % O = 32.2% % H = 2.0%
Sulphuric acid	H ₂ SO ₄	H = 1.0 S = 32.1 O = 16.0	98.1	% H = 2.0% % S = 32.7% % O = 65.2%

- Formula mass of MgSO₄•7H₂O = 246.4
 % by mass of water in MgSO₄•7H₂O = 7 x 18 / 246.4 = 51.1%
- 4. Formula mass of CaCl₂•nH₂O = 111.1 + 18n % by mass of water in CaCl₂•nH₂O = 18n / (111.1 + 18n) = 49.3% \Rightarrow n = 6
- 5. Formula mass of Na₂CO₃•xH₂O = 106 + 18x no. of mole of Na₂CO₃•xH₂O = 14.3 / (106 + 18x) no. of mole of H₂O = 9 / 18 = 0.5 mole ratio of Na₂CO₃•xH₂O : H₂O = 1 : x ∴ [14.3 / (106 + 18x)] / 0.5 = 1 / x ⇒ x = 10

Suggested Answers on Note (Chapter 10) P.22

2.

Element	Cu	Cl
Mass of element / g	47.4	52.6
No. of mole	47.4 / 63.5 = 0.75	52.6 / 35.5 = 1.48
Relative no. of mole (Mole ratio)	1	2

The empirical formula = $CuCl_2$

If the formula mass is 270, then the formula is Cu_2Cl_4 If the formula mass is 540, then the formula is Cu_4Cl_8

Suggested Answers on Note (Chapter 10) P.23 – 27

1.				
	Element	Mg	С	0
	Mass of element / g	28.6	14.3	57.1
	No. of mole	1.2	1.2	3.6
	Relative no. of mole	1	1	3

The empirical formula = MgCO₃

2.

Element	Pb	0	
Mass of element / g	1.374 – 0.126 = 1.248	0.126	
No. of mole	0.006	0.0079	
Relative no. of mole	3	4	

The empirical formula = Pb_3O_4

3. <u>% by mass of O in compound X = 100 - 40 - 6.7 = 53.3%</u>

Element	С	Н	0
Mass of element / g	40	6.6	53.3
No. of mole	3.33	6.7	3.33
Relative no. of mole	1	2	1

 \therefore The empirical formula = CH₂O.

Let the molecular formula of compound X be $(CH_2O)_n$, where n is a positive integer.

Molar mass of
$$(CH_2O)_n = 60.0 \text{ g mol}^{-1}$$

 \therefore The molecular formula of compound X = (CH₂O)₂

$$= C_2H_4O_2$$

4. In 100 g

Element	С	Н
Mass of element / g	85.7	14.3
No. of mole	7.14	14.3
Relative no. of mole	1	2

 \therefore The empirical formula = CH₂.

Let the molecular formula of compound Y be $(CH_2)_n$, where n is a positive integer.

Molar mass of $(CH_2)_n = 56.0 \text{ g mol}^{-1}$

(12 + 1 x 2) x n = 56

$$\Rightarrow$$
 n = 4

 \therefore The molecular formula of compound Y = (CH₂)₄

 $= C_4 H_8$

5. In 100 g

0			
Element	С	Н	0
Mass of element / g	60.0	4.50	35.50
No. of mole	5	4.5	2.22
Relative no. of mole	9	8	4

 \therefore The empirical formula = C₉H₈O₄.

6. In 100 g

Element	С	Н	0
Mass of element / g	26.09	4.35	69.56
No. of mole	2.17	4.35	4.34
Relative no. of mole	1	2	2

The empirical formula = CH_2O_2 Let the molecular formula be $(CH_2O)_n$ Therefore, n (12 + 1 x 2 + 16 x 2) = 46 \Rightarrow n = 1 The molecular formula = CH_2O_2

7. (a)

Element	Pb	0
Mass of element / g	62.1	68.5 - 62.1 = 6.4
No. of mole	0.3	0.4
Relative no. of mole	3	4

The empirical formula = Pb_3O_4

(b) $2PbO + PbO_2 = Pb_3O_4$ $PbO : PbO_2 = 2 : 1$

8. <u>In 100 g</u>

Element	Н	S	0
Mass of element / g	2.40	39.0	58.60
No. of mole	2.40	1.22	3.66
Relative no. of mole	2	1	3

The empirical formula = H_2SO_3

- 9. (a) (i) mass of $H = 9 \times (2/18) = 1g$
 - (ii) mass of C = 5.8 1 = 4.8g
 - (iii)

Element	С	Н
Mass of element	4.8	1
No. of mole	0.4	1
Relative no. of mole	2	5

The empirical formula = C_2H_5

(b) (i) $1.2/M = 0.5/24 \implies M = 57.6$ (molecular mass)

(ii) Let the molecular formula = $(C_2H_5)_n$ n (24+5) = 57.6 \Rightarrow n ~ 2 Molecular formula = C₄H₁₀

Suggested Answers on Note (Chapter 10) P.29

Example 1:

2H₂(g) + 2 moles	· O₂(g) 1 mole	>	2H₂O(g) 2 moles
0.5 moles	0.25 mole	es	0.5 moles
4 moles	2 moles		4 moles
1 volume	0.5 volum	ne	1 volume
0,5 L molecule	es 0.25 L ma	olecule	0.5 L molecules
40 cm ³	20 cm ³		40 cm ³

Example 2:

x = very small

Cu₂O(s) 1 mole	+	H₂(g)	2Cu(s) + 2 moles	H₂O(l) 1 mole
0.25 moles		0.25 moles	0.5 moles	0.25 moles
2 moles		2 moles	4 moles	2 moles
x volume		1 volume	x volume	x volume
0 molecule		2L molecules	0 molecule	2L molecule
x cm ³		30 cm ³	x cm ³	X CM ³

Suggested Answers on Note (Chapter 10) P.34 - 42

- 1. Ca(s) + 2H₂O(l) \longrightarrow Ca(OH)₂(aq) + H₂(g) Number of mole of calcium provided = 2.1 / 40 = 0.0525 According to the equation, 1 mole of Ca reacts with 2 moles of H₂O. Number of mole of H₂O needed = 0.0525 x 2 = 0.105 Mass of H₂O needed = 0.105 x 18 = **1.89 g**
- 2. Number of moles of $Fe_2O_3 = 63.8 / 159.6 = 0.4$ Number of moles of AI required = $2 \times 0.4 = 0.8$ Mass of AI required = $0.8 \times 27 = 21.6$ g
- 3. Number of mole of S = 5.5 Number of mole of SO₂ = 5.5 Mass of SO₂ formed = $5.5 \times (32 + 16 \times 2) = 352 \text{ g}$ Volume of SO₂ formed in r.t.p. = $5.5 \times 24 = 132 \text{ dm}^3$
- 4. Number of mole of Pb = 74.6 / 207 = 0.36 Number of mole of Pb₃O₄ required = 0.36 / 3 = 0.12 Mass of Pb₃O₄ = $0.12 \times 685 = 82.3 \text{ g}$
- 5. 2CuO(s) + C(s) → 2Cu(s) + CO₂(g) Number of mole of CuO = 15 / 79.5 = 0.189 Number of mole of C provided = 1.5 / 12 = 0.125 According to the equation, 2 moles of CuO react with 1 mole of C.
 ∴ 0.125 mole of C needs 0.25 mole of CuO for complete reaction. However, there is only 0.189 mole of CuO provided.
 ∴ CuO is the limiting reactant or limiting reagent (or C is in excess). Number of moles of Cu formed = 0.189 Mass of Cu = 0.189 x 63.5 = 12 g Number of moles of CO₂ = ½ x 0.189 = 0.0945 Volume of CO₂ formed = 0.0945 x 24 = 2.268 dm³
- 6. Mg(s) + 2HCI(aq) \longrightarrow MgCl₂(aq) + H₂(g) Number of mole of Mg = 0.144 Number of mole of MgCl₂ = 0.144 Mass of MgCl₂ formed = 0.144 x (24.3 + 35.5 x 2) = **13.72 g** Number of mole of H₂(g) = 0.144 Volume of H₂ formed = 0.144 x 22.4 = **3.23 dm**³
- 7. $2Al_2O_3(I) \longrightarrow 4Al(I) + 3O_2(g)$ Number of mole of Al = 5.4 / 27 = 0.2 Number of mole of Al_2O_3 reacted = 0.2 / 4 x 2 = 0.1 Mass of Al_2O_3 reacted = 0.1 x (27 x 2 + 16 x 3) = 10.2 g Number of mole of O_2 formed = 0.2 / 4 x 3 = 0.15 Volume of O_2 formed = 0.15 x 24 = 3.6 dm³

- Number of mole of sodium carbonate = 5.3 / 106 = 0.05 Number of mole of HCl = 2 x 0.04 = 0.08 Sodium carbonate is in excess!!! Number of mole of carbon dioxide = 0.08 / 2 = 0.04 Volume of carbon dioxide = 0.04 x 24 = 0.96 dm³
- 9. Number of mole of copper(II) oxide = 15.9 / 79.5 = 0.2Number of mole of hydrogen = 0.2Mass of copper = $0.2 \times 63.5 = 12.7$ g
- Number of mole of sulphuric acid = 3 x 0.025 = 0.075
 Number of mole of hydrated copper(II) sulphate = 0.075
 Molar mass of hydrated copper(II) sulphate = 249.5 g
 Mass of hydrated copper(II) sulphate = 0.075 x 249.5 = 18.1725 g
- 11. $NH_4Cl + NaOH \longrightarrow NH_3 + NaCl + H_2O$ $2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$ Number of mole of ammonium sulphate = 2.64 / 132 = 0.02 Number of mole of ammonia = 0.02 x 2 = 0.04 Number of mole of ammonium chloride = 0.04 Mass of ammonium chloride = 0.04 x 53.5 = 2.14 g
- 12. CaCO₃(s) + 2HCl(g) → CaCl₂(aq) + H₂O(g) + CO₂(g) Number of mole of CO₂ = 1.43 / 44 = 0.0325 Number of mole of CaCO₃ = 0.0325 Mass of pure CaCO₃ = 0.0325 x 100 = 3.25 g % by mass of CaCO₃ in the sample = 3.25 / 3.8 x 100% = 85.5%
- 13. Number of mole of N₂ = 84 / 28 = 3
 Number of mole of NaN₃ = 3 / 3 x 2 = 2
 Mass of NaN₃ = 2 x (23 + 14 x 3) = 130 g
- 14. (a) Number of mole of LiOH = 50 / (7 + 16 + 1) = 2.08Number of mole of CO₂ absorbed = 2.08 / 2 = 1.04Mass of CO₂ absorbed = $1.04 \times 44 = 45.83 \text{ g}$
 - (b) Number of mole of $CO_2 = 100 / 44 = 2.27$ Number of mole of $Li_2CO_3 = 2.27$ Mass of $Li_2CO_3 = 2.27 \times (7 \times 2 + 12 + 16 \times 3) = 167.98 \text{ g}$
- 15. (a) $2Ag_2O(s) \longrightarrow 4Ag(s) + O_2(g)$
 - (b) Number of mole of Ag = 6.52 / 108 = 0.06Number of mole of Ag₂O = $0.06 / 4 \times 2 = 0.03$ Mass of Ag₂O = $0.03 \times (108 \times 2 + 16) = 6.96g$ % by mass of Ag₂O = $6.96 / 8 \times 100\% = 87\%$

16. $Hg(I) + Br_2(I) \longrightarrow HgBr_2(s)$

Number of moles of Hg present = 21.5 / 200.6 = 0.107 mol Number of moles of Br₂ present = 15.6 / 159.8 = 0.0976 mol According to the equation, 1 mole of Hg reacts with 1 mole of Br₂ to produce 1 mole of HgBr₂. During the reaction, 0.0976 mole of Br₂ reacted with 0.0976 mole of Hg. Therefore Hg was in excess. The amount of Br₂ limited the amount of HgBr₂ produced. Number of moles of HgBr₂ produced = 0.0976 mol

Molar mass of HgBr₂ = $200.6 + 2 \times 79.9 = 360.4 \text{ g mol}^{-1}$

- (a) Mass of HgBr₂ produced = 0.0976 x 360.4 = 35.2 g
- (b) Mass of Hg reacted = 0.0976 x 200.6 = 19.6 g Mass of Hg left = (21.5 - 19.6) g = 1.9 g
- 17. (a) Number of mole of TiCl₄ present = $4.75 \times 10^7 / 190 = 2.5 \times 10^5$ Number of mole of Mg present = $1.46 \times 10^7 / 24.3 = 6.01 \times 10^5$ \therefore Mg was in excess. Theoretically, number of mole of Ti produced = 2.5×10^5 Theoretical yield of Ti = $2.5 \times 10^5 \times 48 = 1.2 \times 10^7$ g
 - (b) % yield = 1.06 x 10⁷ / 1.2 x 10⁷ x 100% = 88.3%
- 18. (a) Number of mole of Li present = 8.28 / 7 = 1.18 Number of mole of N₂ present = 10.6 / 28 = 0.37 ∴ N₂ was in excess. Theoretically, number of mole of Li₃N produced = 1.18 / 6 x 2 = 0.39 Theoretical yield of Li₃N = 0.39 x (7 x 3 + 14) = 13.65 g
 - (b) % yield = 3.97 / 13.65 x 100% = **29.08%**

Suggested Answers on Note (Chapter 10) P.44 – 47

- 1. Molar mass of $MnO_2 = 54.9 + 2 \times 16.0 = 86.9 \text{ g mol}^{-1}$ Mass of MnO_2 in the nodule = 0.0400 x 86.9 = 3.48 g Percentage by mass of MnO_2 in the nodule = (3.48 / 15.0) x 100% = 23.2%
- 2. (a) To prevent the condensed water from running back to the tube and crack the hot glass.
 - (b) Test the liquid with dry cobalt(II) chloride paper. The liquid turns the paper from blue to pink.
 - (c) To prevent 'sucking back' of the liquid.
 - (d) Formula mass of $FeSO_4 \bullet xH_2O$ = (55.8 + 32.1 + 4 x 16.0) + x(2 x 1.0 + 16.0) = 151.9 + 18x

1 mole of FeSO₄• xH_2O contains x moles of H_2O . i.e. (151.9 + 18x) g of FeSO₄• xH_2O contain 18x g of H_2O .

30.6 g of FeSO₄• xH_2O contain 13.9 g of H_2O .

 $18x / (151.9 + 18x) = 13.9 / 30.6 \implies x = 7$

3. (a) Suppose we have 100 g of glucose, so there are 40.0 g of carbon, 6.60 g of hydrogen and 53.4 g of oxygen.

	Carbon	Hydrogen	Oxygen
Mass of element in the compound	40.0 g	6.60 g	53.4 g
Relative atomic mass	12.0	1.0	16.0
Number of moles of atoms that combine	40.0 / 12.0 = 3.33 mol	6.60 / 1.0 = 6.60 mol	53.4 / 16.0 = 3.33 mol
Mole ratio of atoms	3.33 / 3.33 = 1	6.60 / 3.33 = 2	3.33 / 3.33 = 1

 \therefore the empirical formula of glucose is CH₂O.

(b) Let $(CH_2O)_n$ be the molecular formula of glucose. Relative molecular mass of glucose = $n(12.0 + 2 \times 1.0 + 16.0) = 30n$

- \therefore 30n = 180 \Rightarrow n = 6
- :. the molecular formula of glucose is $(CH_2O)_6$ or $C_6H_{12}O_6$.

4. (a) Method 1 $2Fe(OH)_3(s) \longrightarrow Fe_2O_3(s) + 3H_2O(g)$

> Molar mass of $Fe(OH)_3 = 55.8 + 3 \times (16.0 + 1.0) = 106.8 \text{ g mol}^{-1}$ Number of moles of $Fe(OH)_3 = 5.35 / 106.8 = 0.0501 \text{ mol}$

According to the equation, 2 moles of $Fe(OH)_3$ give 3 moles of H_2O upon heating.

:. number of H_2O formed = $3/2 \times 0.0501 = 0.0752$ mol

Molar mass of $H_2O = 2 \times 1.0 + 16.0 = 18.0 \text{ g mol}^{-1}$

Mass of H₂O formed = 0.0752 x 18.0 = 1.35 g

Method 2 2Fe(OH)₃(s) \longrightarrow Fe₂O₃(s) + 3H₂O(g)

Molar mass of Fe(OH)₃ = 55.8 + 3 x (16.0 + 1.0) = 106.8 g mol⁻¹

Molar mass of $H_2O = 2 \times 1.0 + 16.0 = 18.0 \text{ g mol}^{-1}$ According to the equation, 2 moles of Fe(OH)₃ give 3 moles of H₂O upon heating.

 \therefore 2 x 106.8 g of Fe(OH)₃ give 3 x 18.0 g of H₂O upon heating.

Mass of H₂O formed = $5.35 \times (3 \times 18.0)/(2 \times 106.8) = 1.35 \text{ g}$

(b) Suppose we have 100 g of the oxide, so there are 72.4 g of iron and 27.6 g of oxygen.

	Iron	Oxygen
Mass of element in the oxide	72.4 g	27.6 g
Relative atomic mass	55.8	16.0
Number of moles of atoms that combine	72.4 / 55.8 = 1.30 mol	27.6 / 16.0 = 1.73 mol
Mole ratio of atoms	1.30 / 1.30 = 1.00	1.73 / 1.30 = 1.33
Simplest whole number ratio of atoms	1 x 3 = 3	1.33 x 3 = 4

 \therefore the empirical formula of the oxide is Fe₃O₄.

- 5. (a) $2ZnS(s) + 3O_2(g) \longrightarrow 2ZnO(s) + 2SO_2(g)$ $2ZnO(s) + C(s) \longrightarrow 2Zn(s) + CO_2(g)$
 - (b) Molar mass of ZnO = 65.4 + 16.0 = 81.4 g mol⁻¹ Number of moles of ZnO = 48.8 / 81.4 = 0.600 mol

According to the equation, 2 moles of ZnO require 1 mole of C for reduction to give 2 moles of Zn.

- ... number of moles of Zn obtained = 0.600 mol number of moles of C required = 0.600 / 2 = 0.300 mol
- (i) Mass of Zn obtained = 0.600 x 65.4 = 39.2 g
- (ii) Mass of C required = 0.300 x 12.0 = 3.60 g
- 6. (a) $2AI(s) + 3CuSO_4(aq) \longrightarrow AI_2(SO_4)_3(aq) + 3Cu(s)$
 - (b) Number of moles of Al reacted = 1.61 / 27.0 = 0.0596 mol
 According to the equation, 2 moles of Al react to give 3 moles of Cu.
 ∴ number of moles of Cu produced = 3 / 2 x 0.0596 = 0.0894 mol

Theoretical yield of $Cu = 0.0894 \times 63.5 = 5.68 \text{ g}$

Percentage yield of $Cu = (2.58 / 5.68) \times 100\% = 45.4\%$

7. $4KO_2(s) + 2H_2O(g) + 4CO_2(g) \longrightarrow 4KHCO_3(s) + 3O_2(g)$ Molar mass of $CO_2 = 12.0 + 2 \times 16.0 = 44.0 \text{ g mol}^{-1}$ Number of moles of CO_2 exhaled = 14.0 / 44.0 = 0.318 mol

According to the equation, 4 moles of CO_2 require 4 moles of KO_2 for complete reaction.

- ... number of moles of KO₂ required = 0.318 mol
- (a) Molar mass of $KO_2 = 39.1 + 2 \times 16.0 = 71.1 \text{ g mol}^{-1}$

Theoretical mass of KO_2 required = 0.318 x 71.1 = 22.6 g

(b) Since the process is only 80% efficient, the mass of KO₂ required = 22.6 / 80% = 28.3 g

8. $MnO_2(s) + 4HCI(aq) \longrightarrow MnCI_2(aq) + CI_2(g) + 2H_2O(I)$

Molar mass of MnO₂ = 54.9 + 2 x 16.0 = 86.9 g mol⁻¹

Number of moles of MnO_2 present = 217 / 86.9 = 2.50 mol

Molar mass of HCl = 1.0 + 35.5 = 36.5 g mol⁻¹

Number of moles of HCl present = 274 / 36.5 = 7.51 mol

- (a) According to the equation, 1 mole of MnO₂ reacts with 4 moles of HCl to produce 1 mole of Cl₂. In this case, the mole ratio of MnO₂ to HCl was 1:3. Therefore all the HCl would be used up. The limiting reagent was HCl.
- (b) Number of moles of Cl_2 produced = 7.51 / 4 = 1.88 mol

Molar mass of Cl₂ = 2 x 35.5 = 71.0 g mol⁻¹

Mass of Cl₂ produced = 1.88 x 71.0 = 133 g

(c) Number of moles of MnO_2 used = 7.51 / 4 = 1.88 mol

Mass of MnO₂ used = 1.88 x 86.9 = 163 g

Mass of MnO_2 (excess reagent) left = (217 - 163) g = 54 g