Chapter 10: Basic Chemical Calculation I

All the following "answers" are for your reference only! The "best" answers are based on your actual experimental results!

Experiment 10.1 : Determining the empirical formula of magnesium oxide

10. Results: [Sample results are given for reference.]

Mass of crucible + lid	= 21.635 g
Mass of crucible + lid + magnesium	= 21.826 g
Mass of crucible + lid + magnesium oxide	= 21.952 g

Mass of magnesium

= **21.826** g - **21.635** g

= **0.191** g

Mass of magnesium oxide = 21.952 g - 21.635 g = 0.317 g

Mass of oxygen present in the oxide = 0.317 g - 0.191 g = 0.126 g

11.

	Magnesium	Oxygen
Masses that combine	0.191 g	0.126 g
Relative atomic masses	24.3	16.0
Number of moles of	0.191 / 24.3	0.126 / 16.0
atoms that combine	= 7.86 x 10 ⁻³ mole	= 7.88 x 10 ⁻³ mole
Mole ratio of atoms	1	1

12. The empirical formula of magnesium oxide is MgO.

- 13. (a) To remove any magnesium oxide.
 - (b) To reduce the loss of magnesium oxide smoke particles.
 - (c) To ensure there is enough oxygen to react with magnesium.
 - (d) To ensure that the burning of magnesium is complete.
 - (e) Weigh the crucible with its content after the 5-minute strong heating. Then reheat and weigh again. There is no increase in mass if the reaction is complete.