Element	R.A.M.	Element	R.A.M.	Element	R.A.M.
Aluminium	27.0	Fluorine	19.0	Nitrogen	14.0
Argon	40.0	Helium	4.0	Oxygen	16.0
Barium	137.3	Hydrogen	1.0	Phosphorus	31.0
Beryllium	9.0	lodine	126.9	Platinum	195.1
Boron	10.8	Iron	55.8	Potassium	39.0
Bromine	80.0	Lead	207.2	Silicon	28.1
Calcium	40.0	Lithium	6.9	Silver	107.9
Carbon	12.0	Magnesium	24.3	Sodium	23.0
Chlorine	35.5	Manganese	54.9	Sulphur	32.1
Chromium	52.0	Mercury	200.6	Tin	118.7
Cobalt	58.9	Neon	20.2	Zinc	65.0
Copper	63.5	Nickel	58.7		

Suggested Answers on Note (Chapter 6S) P.1

Formula	Term to describe its Relative Mass	Molecular or Formula mass
H ₂ O	Molecular / Formula mass	(1) x 2 + (16) x 1 = 18
Ca(OH)2	Formula mass	(40) x 1 + [(16) + (1)] x 2 = 74
H ₂ SO ₄	Molecular / Formula mass	(1) x 2 + (32) x 1 + (16) x 4 = 98
Na ₂ CO ₃ •10H ₂ O	Formula mass	(23) x 2 + (12) x 1 + (16) x 3 + (1 x 2 + 16) x 10 = 286

Suggested Answers on Note (Chapter 6S) P.2

1.					
Formula	Element	R.F.M.	Formula	Element	R.F.M.
КОН	1 K, 1 O and 1 H	39 + 16 + 1 = 56	C ₁₂ H ₂₂ O ₁₁	12 C, 22 H and 11 O	342.0
HNO3	1 H, 1 N and 3 O	63.0	AI(NO ₃) ₃	1 AI, 3 N and 9 O	213.0
PbSO₄	1 Pb, 1 S and 4 O	303.3	NH4HSO4	1 N, 5 H, 1 S and 4 O	115.1
H ₂ SO ₄	2 H, 1 S and 4 O	98.1	$H_2S_2O_7$	2 H, 2 S and 7 O	178.2
Al ₂ O ₃	2 Al and 3 O	102.0	CuSO4.5H2O	1 Cu, 1 S, 9 O and 10 H	249.6
(NH4)3PO4	3 N, 12 H, 1 P and 4 O	149.0	K₃[Fe(CN)₀]	3 K, 1 Fe, 6 C and 6 N	329.1

2.

Name	Formula	R.F.M.	Name	Formula	R.F.M.
Ammonium chloride	NH₄CI	14 + 4 + 35.5 = 53.5	calcium nitrate	Ca(NO3) 2	164.1
copper(II) sulphate	CuSO₄	159.6	lead(II) hydroxide	Pb(OH) ₂	241.2
barium carbonate	BaCO ₃	197.3	magnesium phosphate	Mg ₃ (PO ₄) ₂	262.9
aluminium sulphate	Al ₂ (SO ₄) ₃	342.3	carbon monoxide	со	28.0
nickel(II) chloride	NiCl ₂	129.7	nitrogen monoxide	NO	30.0
cobalt(II) bromide	CoBr ₂	218.7	nitrogen dioxide	NO ₂	46.0
Manganese(II) chloride	MnCl ₂	125.9	sulphur dioxide	SO ₂	64.1
potassium nitrate	KNO ₃	101.0	sulphur trioxide	SO ₃	80.0
sodium sulphate	Na ₂ SO ₄	142.1	carbon disulphide	CS ₂	76.2

Suggested Answers on Note	(Chapter	6S)	P.4
---------------------------	----------	-----	-----

Substance	Symbol / chemical formula	Relative atomic mass(es)	Relative formula mass / Relative molecular mass	Molar mass (mass of 1 mole of substance)
Magnesium	Mg	Mg = 24.3	1 x 24.3 = 24.3	24.3 g mol-1
Nitrogen	N ₂	N = 14.0	2 x 14.0 = 28.0	28.0 g mol ⁻¹
Sulphur dioxide	SO ₂	O = 16.0 S = 32.1	2 x 16.0 = 32.0 1 x 32.1 = 32.1 Total =64.1	64.1 g mol⁻¹
Iron(III) sulphate	Fe2(SO4)3	O = 16.0 S = 32.1 Fe = 55.8	12 x 16.0 = 192.0 3 x 32.1 = 96.3 2 x 55.8 = 111.6 Total = 399.9	399.9 g mol⁻¹

- Molar mass of carbon dioxide = 12 + 16 x 2 = 44 g mol⁻¹ Mass of carbon dioxide = 7.5 x 44 = 330 g
- 2. Number of mole of Mg = 4.86 / 24.3 = 0.2
- 3. Molar mass of water = 1 x 2 + 16 x 1 = 18 g mol⁻¹ Mass of carbon dioxide = 15.5 x 18 = 279 g
- Molar mass of nitrogen dioxide = 14 + 16 x 2 = 46 g mol⁻¹ Mass of nitrogen dioxide = 0.25 x 46 = 11.5 g

Suggested Answers on Note (Chapter 6S) P.5 – 6

1.

Substance	Chemical formula	Relative formula mass / relative molecular mass	Molar mass (g mol ⁻¹)
Hydrogen bromide	HBr	81.0	81.0
Propanoic acid	CH ₃ CH ₂ COOH	74.0	74.0
Sodium hydroxide	NaOH	40.0	40.0
Calcium carbonate	CaCO ₃	100.0	100.0

- 2. Molar mass of nitrogen = 14 x 2 = 28 g mol⁻¹ Number of mole of nitrogen = 15 / 28 = 0.5357
- 3. (a) Molar mass of C_xH_{2x} = 140 / 2.5 = 56 g mol⁻¹
 (b) 56 = 12x + 2x x = 4 Chemical formula = C₄H₈
- 4. Number of mole of copper = 12.7 / 63.5 = 0.2
- 5. Molar mass of potassium carbonate (K₂CO₃) = 39.1 x 2 + 12 + 16 x 3 = 138.2 g mol⁻¹ Mass of potassium carbonate = 4.5 x 138.2 = 621.9 g

6	
0	•

Substance	Chemical formula	Molar mass of substance (g mol ⁻¹)	Mass of substance present (g)	Number of moles of substance present (mol)
Sulphur dioxide	\$O ₂	64.1	83.33	1.30
Lead(II) oxide	PbO	223.0	44.6	0.20
Ammonium carbonate	(NH4)2CO3	96.0	24.0	0.25
Magnesium chloride	MgCl ₂	95.3	19.06	0.20
Zinc hydroxide	Zn(OH)2	99.0	178.2	1.80

Suggested Answers on Note (Chapter 6S) P.7

Example 1:

2H ₂ (g) 2 moles 0.5 moles 4 moles	+	O₂(g) — 1 mole 0.25 moles 2 moles	>	2H2 O(g) 2 moles 0.5 moles <mark>4</mark> moles	
Example 2:					
2Cu2O(s) 2 moles 0.25 moles 4 moles	+	C(s) → 1 mole 0.125 moles 2 moles	4Cu(s) 4 moles 0.5 mole <mark>8</mark> moles	+ S	CO₂(g) 1 mole 0.125 moles 2 moles

Suggested Answers on Note (Chapter 6S) P.8 – 9

1. Number of moles of H_2 present = 0.160 / 2.0 = 0.0800 mol

Number of moles of O_2 present = 0.960 / 32.0 = 0.0300 mol

According to the equation, Mole ratio of $H_2 : O_2 : H_2O = 2 : 1 : 2$

During the reaction, 0.0300 mole of O₂ reacts with 0.0600 mole of H₂.

Therefore **hydrogen** is in excess. The amount of **oxygen** limits the amount of water produced.

Number of moles of H_2O produced = 2 x 0.0300 = 0.0600 mol

Molar mass of $H_2O = 2 \times 1.0 + 16.0 = 18.0 \text{ g mol}^{-1}$

Mass of H_2O produced = 0.0600 x 18.0 = 1.08 g

2. No. of mole of NaHCO₃ = 3.36 / 84 = 0.04

No. of mole of $CO_2 = 0.04 / 2 = 0.02$

Molar mass of CO₂ = 12.0 + 1.0 x 2 = 44.0 g mol⁻¹

Maximum mass of CO₂ = 0.02 x 44.0 = 0.88 g

3. No. of mole of HCl = 2 x 0.025 = 0.05

No. of mole of $H_2 = 0.05 / 2 = 0.025$

Molar mass of $H_2 = 1.0 \times 2 = 2.0 \text{ g mol}^{-1}$

Maximum mass of $H_2 = 0.025 \times 2.0 = 0.05 g$

4. (a) No. of mole of Mg = 2.43 / 24.3 = 0.1

No. of mole of MgO = 0.1

Molar mass of MgO = 24.3 + 16.0 = 40.3 g mol⁻¹

Mass of MgO = 0.1 x 40.3 = 4.03 g

(b) No. of mole of O₂ = 1.28 / 32 = 0.04

No. of mole of Mg = 0.1

Magnesium is in excess!!!

No. of mole of MgO = 0.04 x 2 = 0.08

Mass of MgO = 0.08 x (24.3 + 16) = 3.224 g

Suggested Answers on Note (Chapter 6S) P.10 – 13

 Number of mole of calcium provided = 1.00 / 40 = 0.025
 According to the equation, 1 mole of Ca reacts with 2 moles of H₂O.
 Number of mole of H₂O needed = 0.025 x 2 = 0.050
 Mass of H₂O needed = 0.05 x 18 = 0.90 g

Number of mole of Ca(OH)₂ produced = 0.025Mass of Ca(OH)₂ produced = $0.025 \times 74 = 1.85$ g

Number of mole of H_2 produced = 0.025 Mass of H_2 produced = 0.025 x 2 = 0.05 g

- Number of moles of Fe₂O₃ = 15.96 / 159.6 = 0.10 Number of moles of AI required = 2 x 0.10 = 0.20 Mass of AI required = 0.20 x 27.0 = 5.40 g
- Number of mole of S = 35.2 / 32.1 = 1.097
 Number of mole of SO₂ = 1.097
 Mass of SO₂ formed = 1.097 x (32.1 + 16.0 x 2) = 70.29 g

- Number of mole of Pb = 7.46 / 207.0 = 0.036 Number of mole of Pb₃O₄ required = 0.036 / 3 = 0.012 Mass of Pb₃O₄ = 0.012 x 685 = 8.229 g
- 5. Number of mole of CuO = 15.0 / 79.5 = 0.1887 Number of mole of C provided = 1.5 / 12.0 = 0.125

According to the equation, 2 moles of CuO react with 1 mole of C.

- ∴ 0.125 mole of C needs 0.25 mole of CuO for complete reaction. However, there is only 0.189 mole of CuO provided.
- \therefore CuO is the limiting reactant or limiting reagent (or C is in excess).

Number of moles of Cu formed = 0.1887 Mass of Cu = 0.1887 x 63.5 = 11.98 g

Number of moles of $CO_2 = \frac{1}{2} \times 0.1887 = 0.09435$ Mass of CO_2 formed = 0.09435 x (12 + 16 x 2) = 4.151 g

- Number of mole of Mg = 3.5 / 24.3 = 0.144 Number of mole of MgCl₂ = 0.144 Mass of MgCl₂ formed = 0.144 x (24.3 + 35.5 x 2) = 13.72 g Number of mole of H₂(g) = 0.144 Mass of H₂ formed = 0.144 x (1 x 2) = 0.288 g
- 7. Number of mole of AI = 16.2 / 27.0 = 0.60 Number of mole of Al₂O₃ reacted = 0.60 / 4 x 2 = 0.30 Mass of Al₂O₃ reacted = 0.30 x (27.0 x 2 + 16.0 x 3) = 30.6 g Number of mole of O₂ formed = 0.60 / 4 x 3 = 0.45 Mass of O₂ formed = 0.45 x (16.0 x 2) = 14.4 g
- 8. Number of mole of sodium carbonate = 5.30 / (23.0 x 2 + 12.0 + 16.0 x 3) = 0.05 Number of mole of HCl = 0.08 Sodium carbonate is in excess!!! Number of mole of carbon dioxide = 0.08 / 2 = 0.04 Mass of carbon dioxide = 0.04 x (12.0 + 16.0 x 2) = 1.76 g
- Number of mole of copper(II) oxide = 15.9 / 79.5 = 0.20 Number of mole of hydrogen = 0.20 Mass of copper = 0.20 x 63.5 = 12.7 g
- 10. Number of mole of N₂ = 24.0 / 28.0 = 0.8571
 Number of mole of NaN₃ = 0.8571 / 3 x 2 = 0.5714
 Mass of NaN₃ = 0.5714 x (23.0 + 14.0 x 3) = 37.14 g

- (a) Number of mole of LiOH = 100.0 / (7.0 + 16.0 + 1.0) = 4.167
 Number of mole of CO₂ absorbed = 4.167 / 2 = 2.083
 Mass of CO₂ absorbed = 2.083 x (12.0 + 16.0 x 2) = 91.67 g
 - (b) Number of mole of CO₂ = 200.0 / (12.0 + 16.0 x 2) = 4.545 Number of mole of Li₂CO₃ = 4.545 Mass of Li₂CO₃ = 4.545 x (7.0 x 2 + 12.0 + 16.0 x 3) = 418.2 g
- 12. Number of moles of Hg present = 21.5 / 200.6 = 0.107 mol Number of moles of Br₂ present = 15.6 / 160.0 = 0.0975 mol Hg was in excess. The amount of Br₂ limited the amount of HgBr₂ produced. Number of moles of HgBr₂ produced = 0.0975 mol Molar mass of HgBr₂ = 200.6 + 2 x 80.0 = 360.6 g mol⁻¹
 - (a) Mass of HgBr₂ produced = $0.0975 \times 360.6 = 35.16 \text{ g}$
 - (b) Mass of Hg reacted = 0.0975 x 200.6 = 19.56 g Mass of Hg left = (21.5 – 19.56) g = 1.94 g

Suggested Answers on Note (Chapter 6S) P.14 – 15

- The formula of aluminium oxide is Al₂O₃.
 Formula mass of Al₂O₃ = 2 x 27.0 + 3 x 16.0 = 102.0. Mass of Al₂O₃ = 102.0 x 2.3 = 234.6 g
- The formula of metal sulphate is M₂SO₄.
 71.05 / (2m + 32.0 + 16.0 x 4) = 0.50 m = 23.05
- 3. 2.0 = mass / (35.5 x 2) Mass of chlorine molecules = 2.0 x 71.0 = 142.0 g
- 4. Formula mass of FeSO₄•7H₂O = 55.8 + 32.0 + 16.0 x 4 + 7 x (1.0 x 2 + 16.0) = 277.8
- 5. Number of moles of sodium hydroxide = 160.0 / (23.0 + 16.0 + 1.0) = 4
- Number of mole of lead = 20.7 / 207.0 = 0.10 Number of mole of lead(II) oxide = 0.10 Mass of lead(II) oxide = 0.10 x (207.0 + 16.0) = 22.3 g
- 7. $2ZnO(s) + C(s) \longrightarrow 2Zn(s) + CO_2(g)$ Number of mole of zinc = 0.80 Number of mole of ZnO = 0.80 Mass of ZnO = 0.80 x (65.4 + 16.0) = 65.12 g

- 8. Number of mole of potassium = 3.90 / 39.0 = 0.10 Number of mole of hydrogen = 0.10 / 2 = 0.05 Mass of hydrogen = 0.05 x (1.0 x 2) = 0.10 g
- Number of mole of oxygen = 4.80 / (16.0 x 2) = 0.15 Number of mole of M = 0.15 x 4 = 0.60 Relative atomic mass of M = 19.20 / 0.60 = 32.0