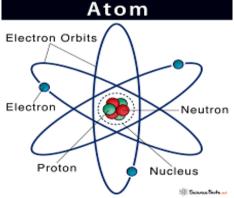


Newsletter of Science Society, Dec, 2022 二零二二年十二月

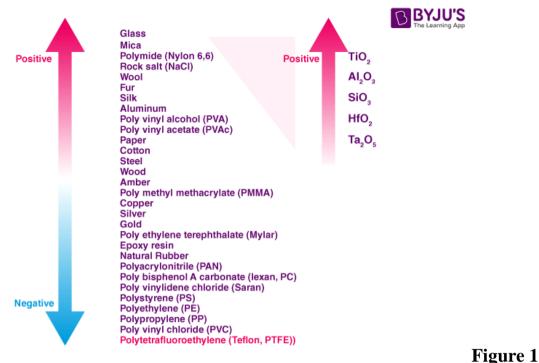
Static electricity (靜電)

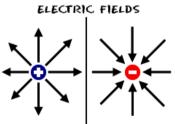


Introduction :

- build up of an electrical charge on the surface of an object
- "static"— the charges remain in one area rather than moving or "flowing" to another area.

Principle:


- Atoms are made up of tiny particles called neutrons, protons, and electrons.


- A static charge is formed when two surfaces touch each other and the electrons move from one object to another.
 - \Rightarrow One object will have a positive charge and the other a negative charge.

Types:

- 1) Friction
 - Two materials are rubbed together, the surface electrons move from one object to another object.
 - The direction of electrons moving is depends on the Triboelectric Series (摩擦電序) refer to figure 1

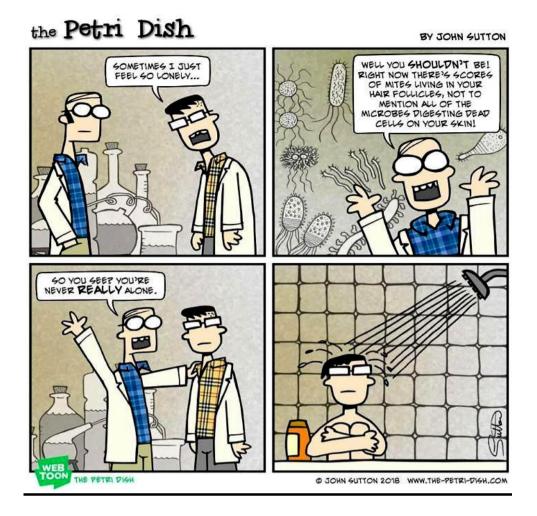
- \Rightarrow Materials on the positive side of the Triboelectric Series will tend to give up their surface electrons and become positively charged
- \Rightarrow Materials on the negative side of the series tend to gain electrons and become negative charged
- \Rightarrow The greater exchange of electrons, the higher charge is generated.
- 2) Separation
 - similar to that of friction.
- 3) Induction
 - materials are in the presence of a strong electric field, static charges can be generated

- \Rightarrow The method of charging is caused by ionization of the air between the surface of the material and the voltage source
- \Rightarrow carries surface electrons away from the material to the source

Found in daily life:

- 1) **Pollution manage**
 - \Rightarrow Static electricity is utilized in pollutants management by making use of a static fee to dust particles in the air after which collecting those charged particles on a plate or collector of the opposite electric charge.

2) Xerography


- \Rightarrow Your photocopier or Xerox system makes use of static electricity to replicate print to a page.
- \Rightarrow One form of this device electrically charges ink so that it will accumulate on the paper in the detailed areas. Another model of a photocopier makes use of expenses to paste the link to a drum, which then transfers it to the paper.

3) Air fresheners

- \Rightarrow Some people purchase what is known as air ionizers to freshen and purify the air of their homes. The work is on a similar principle as the smokestack pollutants manage.
- \Rightarrow These devices strip electrons from smoke molecules, dust particles, and pollen in the air, simply as what happens in creating static electricity.
- \Rightarrow These charged dust and smoke particles are then drawn to and stuck to a plate at the device with the opposite charge. After a while, lots of the pollutants are drawn from the air.

Factors affecting static electricity

- 1) Types of Material
 - \Rightarrow acetate gains a charge very readily whilst glass will gain a charge less readily.
 - \Rightarrow the relative position of materials on the Triboelectric Series will determine whether a material charges positively or negatively dependent on the other material with which it has come into contact
- 2) Humidity
 - \Rightarrow the dryer the environment, the higher the level of static charge and conversely the higher the humidity, the lower the static charge.
 - \Rightarrow Atmospheric humidity deposits small quantities of water on all surfaces in their environment
 - \Rightarrow surface static charges on materials have a tendency to dissipate to earth by current flow through the surface moisture.
- 3) Repetition
 - \Rightarrow Repeated actions such as friction or separation will increase the level of charge found on a material.
- 4) Battery effect
 - \Rightarrow The combination of many charged items can lead to extremely high charges.
- 5) Change of temperature
 - \Rightarrow As a material cools down it has a tendency to generate charge.

RELAXING ZONE

	7	8				3		
	2	3			6	5	8	1
							9	7
		7	2	8	1			6
				9	4		1	
							7	4
3		5	1					
	8	4		6				
7		2		5				

6	4	L	8	S	8	2	9	L
8	S	L	5	9	6	4	8	L
8	5	9	L	4	L	S	6	8
4	L	5	S	ε	9	6	L	8
S	L	8	4	6	L	9	8	2
9	8	6	ι	8	2	L	7	S
L	6	4	ε	2	8	L	S	9
L	8	S	9	L	4	8	2	6
5	9	8	6	L	S	8	L	4

Science Society 2022-2023

Chairperson: Pun Sze Ting 5B

Vice-chairperson: Fung Pui Ka 5C Yeung Tsz Ching 5C Yip Tsz Ki 5D

Members: Sin Ho Yin Keanu 5B Yu Tsun Sum 5B Chow Baylon Philip 5C To Chun Wai 5C Lee Yiu Sing 4D Yu Cheuk Ying 2A Yiu Man Cheuk 2C